1
|
Ueno M, Shibata S, Nakanishi I, Aoki I, Yamada KI, Matsumoto KI. Effects of selenium deficiency on biological results of X-ray and carbon-ion beam irradiation in mice. J Clin Biochem Nutr 2023; 72:107-116. [PMID: 36936873 PMCID: PMC10017320 DOI: 10.3164/jcbn.22-57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/16/2022] [Indexed: 12/13/2022] Open
Abstract
The impact of radiation-induced hydrogen peroxide (H2O2) on the biological effects of X-rays and carbon-ion beams was investigated using a selenium-deficient (SeD) mouse model. Selenium is the active center of glutathione peroxidase (GSH-Px), and SeD mice lack the ability to degrade H2O2. Male and female SeD mice were prepared by feeding a torula yeast-based SeD diet and ultrapure water. Thirty-day survival rates after whole-body irradiation, radiation-induced leg contracture, and MRI-based redox imaging of the brain were assessed and compared between SeD and normal mice. Thirty-day lethality after whole-body 5.6 Gy irradiation with X-rays or carbon-ion beams was higher in the SeD mice than in the normal mice, while SeD did not give the notable difference between X-rays and carbon-ion beams. SeD also did not affect the maximum leg contracture level after irradiation with carbon-ion beams, but delayed the leg contraction rate. In addition, no marked effects of SeD were observed on variations in the redox status of the brain after irradiation. Collectively, the present results indicate that SeD slightly altered the biological effects of X-rays and/or carbon-ion beams. GSH-Px processes endogenous H2O2 generated through mitochondrial respiration, but does not have the capacity to degrade H2O2 produced by irradiation.
Collapse
Affiliation(s)
- Megumi Ueno
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Sayaka Shibata
- Applied MRI Research Group, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ichio Aoki
- Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ken-ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
2
|
Matsumoto KI, Ueno M, Shoji Y, Nakanishi I. Estimation of the Local Concentration of the Markedly Dense Hydroxyl Radical Generation Induced by X-rays in Water. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030592. [PMID: 35163857 PMCID: PMC8840408 DOI: 10.3390/molecules27030592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022]
Abstract
The linear-density (number of molecules on an arbitrary distance) of X-ray-induced markedly dense hydroxyl radicals (•OH) in water was estimated based on EPR spin-trapping measurement. A lower (0.13 mM-2.3 M) concentration series of DMPO water solutions and higher (1.7-6.0 M) concentration series of DMPO water solutions plus neat DMPO liquid (8.8 M as DMPO) were irradiated with 32 Gy of X-rays. Then, the yield of DMPO-OH in DMPO water solutions and the total spin-adduct of DMPO in neat DMPO were quantified. For the higher concentration DMPO series, the EPR peak area was estimated by double integration, and the baseline correction of the integral spectrum is necessary for accurate estimation of the peak area. The preparation of a suitable standard sample corresponding to the electric permittivity according to DMPO concentration was quite important for quantification of DMPO-OH, especially in DMPO concentration beyond 2 M. The linear-density of •OH generation in water by X-ray irradiation was estimated from the inflection point on the plot of the DMPO-OH yield versus DMPO linear-density. The linear-density of X-ray-induced markedly dense •OH was estimated as 1168 μm-1, which was converted to 0.86 nm as the intermolecular distance and 2.6 M as the local concentration.
Collapse
Affiliation(s)
- Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Chiba, Japan; (M.U.); (Y.S.)
- Correspondence: ; Tel.: +81-43-206-3123
| | - Megumi Ueno
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Chiba, Japan; (M.U.); (Y.S.)
| | - Yoshimi Shoji
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Chiba, Japan; (M.U.); (Y.S.)
- Quantum RedOx Chemistry Group, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Chiba, Japan;
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Group, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555, Chiba, Japan;
| |
Collapse
|
3
|
Matsumoto KI, Nakanishi I, Abe Y, Sato S, Kohno R, Sakata D, Mizushima K, Lee SH, Inaniwa T. Effects of loading a magnetic field longitudinal to the linear particle-beam track on yields of reactive oxygen species in water. Free Radic Res 2021; 55:547-555. [PMID: 34569399 DOI: 10.1080/10715762.2021.1970151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The effects of a magnetic field longitudinal to the ion beam track on the generation of hydroxyl radicals (•OH) and hydrogen peroxide (H2O2) in water were investigated. A longitudinal magnetic field was reported to enhance the biological effects of the ion beam. However, the mechanism of the increased cell death by a longitudinal magnetic field has not been clarified. The local density of •OH generation was estimated by a method based on the EPR spin-trapping. A series of reaction mixtures containing varying concentrations (0.76‒2278 mM) of DMPO was irradiated by 16 Gy of carbon- or iron-ion beams at the Heavy-Ion Medical Accelerator in Chiba (HIMAC, NIRS/QST, Chiba, Japan) with or without a longitudinal magnetic field (0.0, 0.3, or 0.6 T). The DMPO-OH yield in the sample solutions was measured by X-band EPR and plotted versus DMPO density. O2-dependent and O2-independent H2O2 yields were measured. An aliquot of ultra-pure water was irradiated by carbon-ion beams with or without a longitudinal magnetic field. Irradiation experiments were performed under air or hypoxic conditions. H2O2 generation in irradiated water samples was quantified by an EPR spin-trapping, which measures •OH synthesized from H2O2 by UVB irradiation. Relatively sparse •OH generation caused by particle beams in water were not affected by loading a magnetic field on the beam track. O2-dependent H2O2 generation decreased and oxygen-independent H2O2 generation increased after loading a magnetic field parallel to the beam track. Loading a magnetic field to the beam track made •OH generation denser or made dense •OH more reactive.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Group, Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Yasushi Abe
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Shinji Sato
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Ryosuke Kohno
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Dousatsu Sakata
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Kota Mizushima
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Sung Hyun Lee
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| | - Taku Inaniwa
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Japan
| |
Collapse
|
4
|
Matsumoto KI, Ueno M, Shoji Y, Nakanishi I. Heavy-ion beam-induced reactive oxygen species and redox reactions. Free Radic Res 2021; 55:450-460. [PMID: 33729087 DOI: 10.1080/10715762.2021.1899171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Quantification and local density estimation of radiation-induced reactive oxygen species (ROS) were described focusing on our recent and related studies. Charged particle radiation, i.e. heavy-ion beams, are currently utilized for medical treatment. Differences in ROS generation properties between photon and charged particle radiation may lead to differences in the quality of radiation. Radiation-induced generation of ROS in water was quantified using several different approaches to electron paramagnetic resonance (EPR) techniques. Two different densities of localized hydroxyl radical (•OH) generation, i.e. milli-molar and molar levels, were described. Yields of sparse •OH decreased with increasing linear energy transfer (LET), the yield total •OH was not affected by LET. In the high-density, molar level, •OH environment, •OH can react and directly make hydrogen peroxide (H2O2), and then possible to form a high-density H2O2 cluster. The amount of total oxidation reactions caused by oxidative ROS, such as •OH and hydroperoxyl radial (HO2•), was decreased with increasing LET. Possibilities of the sequential reactions were discussed based on the initial localized density at the generated site. Water-induced ROS have been well investigated. However, little is known about radiation-induced free radical generation in lipidic conditions. Radio-chemistry to understand the sequential radio-biological effects is still under development.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Megumi Ueno
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yoshimi Shoji
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
5
|
Ueno M, Nakanishi I, Matsumoto KI. Inhomogeneous generation of hydroxyl radicals in hydrogen peroxide solution induced by ultraviolet irradiation and in a Fenton reaction system. Free Radic Res 2020; 55:481-489. [PMID: 32896187 DOI: 10.1080/10715762.2020.1819995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The density of hydroxyl radical (•OH) generation by degeneration of hydrogen peroxide (H2O2) during UVB irradiation and in a Fenton reaction system was estimated. The purpose of this study was to evaluate whether these reaction systems generate spatially uniform or inhomogeneous •OH from H2O2 in the reaction mixture. A series of 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) solutions of several concentrations (0.13‒1661 mM) were prepared. For UVB irradiation, 1 μl of 98 mM, 980 mM, or 9.8 M H2O2 solution was added to a 100-μl aliquot of DMPO solution, and the reaction mixture was irradiated with UVB. For the Fenton reaction, 1 μl of 98 mM H2O2 and 1 μl of 100 mM FeSO4 were added to a 100-μl aliquot of DMPO solution. After UVB irradiation or adding FeSO4, the entire volume of the reaction mixture was drawn into PTFE tubing and measured by X-band EPR. The DMPO-OH concentration in the reaction mixture was plotted versus the molecular density of DMPO, and the density of •OH generation was estimated from an inflection point on the plotted profile. The local densities of the UV-induced •OH in the H2O2 water solutions depended on the concentration of H2O2 in the solution, and were likely localized. The energy absorption process of photons was suspected to occur in a step-wise manner in a limited volume. •OH generation in the Fenton reaction system was expected to be uniformly distributed, but inhomogeneous •OH generation was observed at the molecular level.
Collapse
Affiliation(s)
- Megumi Ueno
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|