1
|
Roszkowska M. Multilevel Mechanisms of Cancer Drug Resistance. Int J Mol Sci 2024; 25:12402. [PMID: 39596466 PMCID: PMC11594576 DOI: 10.3390/ijms252212402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer drug resistance represents one of the most significant challenges in oncology and manifests through multiple interconnected molecular and cellular mechanisms. Objective: To provide a comprehensive analysis of multilevel processes driving treatment resistance by integrating recent advances in understanding genetic, epigenetic, and microenvironmental factors. This is a systematic review of the recent literature focusing on the mechanisms of cancer drug resistance, including genomic studies, clinical trials, and experimental research. Key findings include the following: (1) Up to 63% of somatic mutations can be heterogeneous within individual tumors, contributing to resistance development; (2) cancer stem cells demonstrate enhanced DNA repair capacity and altered metabolic profiles; (3) the tumor microenvironment, including cancer-associated fibroblasts and immune cell populations, plays a crucial role in promoting resistance; and (4) selective pressure from radiotherapy drives the emergence of radioresistant phenotypes through multiple adaptive mechanisms. Understanding the complex interplay between various resistance mechanisms is essential for developing effective treatment strategies. Future therapeutic approaches should focus on combination strategies that target multiple resistance pathways simultaneously, guided by specific biomarkers.
Collapse
Affiliation(s)
- Malgorzata Roszkowska
- Department of Clinical Neuropsychology, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland
| |
Collapse
|
2
|
Jiang Y, Zhou R, Liao F, Kong G, Zeng J, Wu Y, Li X, Wang B, Qi F, Chen S, Zhu Q, Gu L, Zheng C. Unraveling radiation-induced skeletal muscle damage: Insights from a 3D human skeletal muscle organoid model. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119792. [PMID: 38936620 DOI: 10.1016/j.bbamcr.2024.119792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Three-dimensional (3D) organoids derived from human pluripotent stem cells (hPSCs) have revolutionized in vitro tissue modeling, offering a unique opportunity to replicate physiological tissue organization and functionality. This study investigates the impact of radiation on skeletal muscle response using an innovative in vitro human 3D skeletal muscle organoids (hSMOs) model derived from hPSCs. METHODS The hSMOs model was established through a differentiation protocol faithfully recapitulating embryonic myogenesis and maturation via paraxial mesodermal differentiation of hPSCs. Key skeletal muscle characteristics were confirmed using immunofluorescent staining and RT-qPCR. Subsequently, the hSMOs were exposed to a clinically relevant dose of 2 Gy of radiation, and their response was analyzed using immunofluorescent staining and RNA-seq. RESULTS The hSMO model faithfully recapitulated embryonic myogenesis and maturation, maintaining key skeletal muscle characteristics. Following exposure to 2 Gy of radiation, histopathological analysis revealed deficits in hSMOs expansion, differentiation, and repair response across various cell types at early (30 min) and intermediate (18 h) time points post-radiation. Immunofluorescent staining targeting γH2AX and 53BP1 demonstrated elevated levels of foci per cell, particularly in PAX7+ cells, during early and intermediate time points, with a distinct kinetic pattern showing a decrease at 72 h. RNA-seq data provided comprehensive insights into the DNA damage response within the hSMOs. CONCLUSIONS Our findings highlight deficits in expansion, differentiation, and repair response in hSMOs following radiation exposure, enhancing our understanding of radiation effects on skeletal muscle and contributing to strategies for mitigating radiation-induced damage in this context.
Collapse
Affiliation(s)
- Yifei Jiang
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Runtao Zhou
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Fawei Liao
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Ganggang Kong
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China; Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingguang Zeng
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Yixun Wu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Xubo Li
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Bo Wang
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Fangze Qi
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Shiju Chen
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Qintang Zhu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Liqiang Gu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Canbin Zheng
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China.
| |
Collapse
|
3
|
Gardner LL, Thompson SJ, O'Connor JD, McMahon SJ. Modelling radiobiology. Phys Med Biol 2024; 69:18TR01. [PMID: 39159658 DOI: 10.1088/1361-6560/ad70f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Radiotherapy has played an essential role in cancer treatment for over a century, and remains one of the best-studied methods of cancer treatment. Because of its close links with the physical sciences, it has been the subject of extensive quantitative mathematical modelling, but a complete understanding of the mechanisms of radiotherapy has remained elusive. In part this is because of the complexity and range of scales involved in radiotherapy-from physical radiation interactions occurring over nanometres to evolution of patient responses over months and years. This review presents the current status and ongoing research in modelling radiotherapy responses across these scales, including basic physical mechanisms of DNA damage, the immediate biological responses this triggers, and genetic- and patient-level determinants of response. Finally, some of the major challenges in this field and potential avenues for future improvements are also discussed.
Collapse
Affiliation(s)
- Lydia L Gardner
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - John D O'Connor
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
- Ulster University School of Engineering, York Street, Belfast BT15 1AP, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
4
|
Zaid A, Ariel A. Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders. Adv Drug Deliv Rev 2024; 207:115204. [PMID: 38342241 DOI: 10.1016/j.addr.2024.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Targeting specific organs and cell types using nanotechnology and sophisticated delivery methods has been at the forefront of applicative biomedical sciences lately. Macrophages are an appealing target for immunomodulation by nanodelivery as they are heavily involved in various aspects of many diseases and are highly plastic in their nature. Their continuum of functional "polarization" states has been a research focus for many years yielding a profound understanding of various aspects of these cells. The ability of monocyte-derived macrophages to metamorphose from pro-inflammatory to reparative and consequently to pro-resolving effectors has raised significant interest in its therapeutic potential. Here, we briefly survey macrophages' ontogeny and various polarization phenotypes, highlighting their function in the inflammation-resolution shift. We review their inducing mediators, signaling pathways, and biological programs with emphasis on the nucleic acid sensing-IFN-I axis. We also portray the polarization spectrum of macrophages and the characteristics of their transition between different subtypes. Finally, we highlighted different current drug delivery methods for targeting macrophages with emphasis on nanotargeting that might lead to breakthroughs in the treatment of wound healing, bone regeneration, autoimmune, and fibrotic diseases.
Collapse
Affiliation(s)
- Ahmad Zaid
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel.
| |
Collapse
|
5
|
Li J, Liu T, Tang N, Lin S, Zhang F, Yuan W, Zhang T, Deng SH, Wu DM, Xu Y. Cyclin-dependent kinase inhibitor 1A inhibits pyroptosis to enhance human lung adenocarcinoma cell radioresistance by promoting DNA repair. Heliyon 2024; 10:e26975. [PMID: 38468925 PMCID: PMC10926078 DOI: 10.1016/j.heliyon.2024.e26975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Purpose One of the best anticancer treatments available is radiotherapy, which can be used either alone or in conjunction with other forms of treatment including chemotherapy and surgery. Nevertheless, a number of biochemical and physiological processes that react to ionizing radiation might provide tumor cells radioresistance, which makes radiotherapy ineffective. It has been found that CDKN1A regulates DNA damage repair, which contributes to tumor radioresistance. However, the precise mechanism is still unknown. Therefore, this study aimed to explore the mechanisms underlying CDKN1A-enhanced radioresistance in tumor cells. Methods Cells were irradiated with 4 Gy after CDKN1A overexpression or knockdown. CDKN1A expression was measured using real-time PCR, cell viability was evaluated using cell counting kit-8 and colony formation assays, and cytotoxicity was assessed using a lactate dehydrogenase assay. Pyroptosis in cells was analyzed using caspase-1 activity assay, enzyme-linked immunosorbent assay, and flow cytometry. Inflammation activation was detected through a co-immunoprecipitation assay. Activation of pyroptosis-related proteins was analyzed using immunohistochemistry, Western blot, and immunofluorescence. Tumor radioresistance in vivo was evaluated in a mouse xenograft model. Results Radiotherapy upregulated CDKN1A expression, which promoted lung adenocarcinoma cell survival. CDKN1A influenced radiation-induced pyroptosis in A549, which mainly depended on inhibiting the activation of the AIM2 inflammasome by promoting DNA repair. Additionally, CDKN1A upregulation enhanced A549 xenograft tumor radioresistance by inhibiting radiation-induced pyroptosis in vivo. Conclusions CDKN1A inhibits pyroptosis to enhance the radioresistance of lung adenocarcinoma cells by promoting DNA repair. This study may serve as a reference for developing novel targeted therapies against cancer.
Collapse
Affiliation(s)
- Jing Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Teng Liu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Ning Tang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Sheng Lin
- The First People's Hospital of Ziyang City, Ziyang, Sichuan, PR China
| | - Feng Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Wei Yuan
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Ting Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Shi-hua Deng
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Dong-ming Wu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| | - Ying Xu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China
| |
Collapse
|
6
|
Chen S, Liu F, Yang A, Shang K. For better or worse: crosstalk of parvovirus and host DNA damage response. Front Immunol 2024; 15:1324531. [PMID: 38464523 PMCID: PMC10920228 DOI: 10.3389/fimmu.2024.1324531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Parvoviruses are a group of non-enveloped DNA viruses that have a broad spectrum of natural infections, making them important in public health. NS1 is the largest and most complex non-structural protein in the parvovirus genome, which is indispensable in the life cycle of parvovirus and is closely related to viral replication, induction of host cell apoptosis, cycle arrest, DNA damage response (DDR), and other processes. Parvovirus activates and utilizes the DDR pathway to promote viral replication through NS1, thereby increasing pathogenicity to the host cells. Here, we review the latest progress of parvovirus in regulating host cell DDR during the parvovirus lifecycle and discuss the potential of cellular consequences of regulating the DDR pathway, targeting to provide the theoretical basis for further elucidation of the pathogenesis of parvovirus and development of new antiviral drugs.
Collapse
Affiliation(s)
- Songbiao Chen
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| | - Feifei Liu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Aofei Yang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Ke Shang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
7
|
Behl T, Kumar A, Vishakha, Sehgal A, Singh S, Sharma N, Yadav S, Rashid S, Ali N, Ahmed AS, Vargas-De-La-Cruz C, Bungau SG, Khan H. Understanding the mechanistic pathways and clinical aspects associated with protein and gene based biomarkers in breast cancer. Int J Biol Macromol 2023; 253:126595. [PMID: 37648139 DOI: 10.1016/j.ijbiomac.2023.126595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Cancer is one of the most widespread and severe diseases with a huge mortality rate. In recent years, the second-leading mortality rate of any cancer globally has been breast cancer, which is one of the most common and deadly cancers found in women. Detecting breast cancer in its initial stages simplifies treatment, decreases death risk, and recovers survival rates for patients. The death rate for breast cancer has risen to 0.024 % in some regions. Sensitive and accurate technologies are required for the preclinical detection of BC at an initial stage. Biomarkers play a very crucial role in the early identification as well as diagnosis of women with breast cancer. Currently, a wide variety of cancer biomarkers have been discovered for the diagnosis of cancer. For the identification of these biomarkers from serum or other body fluids at physiological amounts, many detection methods have been developed. In the case of breast cancer, biomarkers are especially helpful in discovering those who are more likely to develop the disease, determining prognosis at the time of initial diagnosis and choosing the best systemic therapy. In this study we have compiled various clinical aspects and signaling pathways associated with protein-based biomarkers and gene-based biomarkers.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Ankush Kumar
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, Ropar 140108, Punjab, India
| | - Vishakha
- Institute of Pharmaceutical Sciences, IET Bhaddal Technical Campus, Ropar 140108, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, 141104 Ludhiana, Punjab, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala 133203, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana Ambala 133203, Haryana, India
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow 226028, Uttar Pradesh, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia.
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadah 11451, Saudi Arabia
| | - Amira Saber Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 150001, Peru; E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410087, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410087, Romania
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| |
Collapse
|
8
|
Jenni R, Chikhaoui A, Nabouli I, Zaouak A, Khanchel F, Hammami-Ghorbel H, Yacoub-Youssef H. Differential Expression of ATM, NF-KB, PINK1 and Foxo3a in Radiation-Induced Basal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24087181. [PMID: 37108343 PMCID: PMC10138907 DOI: 10.3390/ijms24087181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Research in normal tissue radiobiology is in continuous progress to assess cellular response following ionizing radiation exposure especially linked to carcinogenesis risk. This was observed among patients with a history of radiotherapy of the scalp for ringworm who developed basal cell carcinoma (BCC). However, the involved mechanisms remain largely undefined. We performed a gene expression analysis of tumor biopsies and blood of radiation-induced BCC and sporadic patients using reverse transcription-quantitative PCR. Differences across groups were assessed by statistical analysis. Bioinformatic analyses were conducted using miRNet. We showed a significant overexpression of the FOXO3a, ATM, P65, TNF-α and PINK1 genes among radiation-induced BCCs compared to BCCs in sporadic patients. ATM expression level was correlated with FOXO3a. Based on receiver-operating characteristic curves, the differentially expressed genes could significantly discriminate between the two groups. Nevertheless, TNF-α and PINK1 blood expression showed no statistical differences between BCC groups. Bioinformatic analysis revealed that the candidate genes may represent putative targets for microRNAs in the skin. Our findings may yield clues as to the molecular mechanism involved in radiation-induced BCC, suggesting that deregulation of ATM-NF-kB signaling and PINK1 gene expression may contribute to BCC radiation carcinogenesis and that the analyzed genes could represent candidate radiation biomarkers associated with radiation-induced BCC.
Collapse
Affiliation(s)
- Rim Jenni
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| | - Imen Nabouli
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| | - Anissa Zaouak
- Department of Dermatology, Habib Thameur Hospital (LR12SP03), Medicine Faculty, University Tunis El Manar, Tunis 1008, Tunisia
| | - Fatma Khanchel
- Anatomopathology Department, Habib Thameur Hospital (LR12SP03), Medicine Faculty, University Tunis El Manar, Tunis 1008, Tunisia
| | - Houda Hammami-Ghorbel
- Department of Dermatology, Habib Thameur Hospital (LR12SP03), Medicine Faculty, University Tunis El Manar, Tunis 1008, Tunisia
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| |
Collapse
|
9
|
Michalkova R, Kello M, Cizmarikova M, Bardelcikova A, Mirossay L, Mojzis J. Chalcones and Gastrointestinal Cancers: Experimental Evidence. Int J Mol Sci 2023; 24:ijms24065964. [PMID: 36983038 PMCID: PMC10059739 DOI: 10.3390/ijms24065964] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Colorectal (CRC) and gastric cancers (GC) are the most common digestive tract cancers with a high incidence rate worldwide. The current treatment including surgery, chemotherapy or radiotherapy has several limitations such as drug toxicity, cancer recurrence or drug resistance and thus it is a great challenge to discover an effective and safe therapy for CRC and GC. In the last decade, numerous phytochemicals and their synthetic analogs have attracted attention due to their anticancer effect and low organ toxicity. Chalcones, plant-derived polyphenols, received marked attention due to their biological activities as well as for relatively easy structural manipulation and synthesis of new chalcone derivatives. In this study, we discuss the mechanisms by which chalcones in both in vitro and in vivo conditions suppress cancer cell proliferation or cancer formation.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martina Cizmarikova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Annamaria Bardelcikova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
10
|
Venugopala KN. Targeting the DNA Damage Response Machinery for Lung Cancer Treatment. Pharmaceuticals (Basel) 2022; 15:ph15121475. [PMID: 36558926 PMCID: PMC9781725 DOI: 10.3390/ph15121475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Lung cancer is considered the most commonly diagnosed cancer and one of the leading causes of death globally. Despite the responses from small-cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) patients to conventional chemo- and radiotherapies, the current outcomes are not satisfactory. Recently, novel advances in DNA sequencing technologies have started to take off which have provided promising tools for studying different tumors for systematic mutation discovery. To date, a limited number of DDR inhibition trials have been conducted for the treatment of SCLC and NSCLC patients. However, strategies to test different DDR inhibitor combinations or to target multiple pathways are yet to be explored. With the various biomarkers that have either been recently discovered or are the subject of ongoing investigations, it is hoped that future trials would be designed to allow for studying targeted treatments in a biomarker-enriched population, which is defensible for the improvement of prognosis for SCLC and NSCLC patients. This review article sheds light on the different DNA repair pathways and some of the inhibitors targeting the proteins involved in the DNA damage response (DDR) machinery, such as ataxia telangiectasia and Rad3-related protein (ATR), DNA-dependent protein kinase (DNA-PK), and poly-ADP-ribose polymerase (PARP). In addition, the current status of DDR inhibitors in clinical settings and future perspectives are discussed.
Collapse
Affiliation(s)
- Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| |
Collapse
|
11
|
Wang T, Liao J, Zheng L, Zhou Y, Jin Q, Wu Y. Aloe vera for prevention of radiation-induced dermatitis: A systematic review and cumulative analysis of randomized controlled trials. Front Pharmacol 2022; 13:976698. [PMID: 36249738 PMCID: PMC9557187 DOI: 10.3389/fphar.2022.976698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Aloe vera were frequently reported to reduce the risk of radiation-induced dermatitis (RID), but the quantitative results from all the relevant studies were not presently available. This study sought to conduct a cumulative analysis to better clarify the preventive effects of aloe vera in RID. Methods: MEDLINE (PubMed), Cochrane, EMBASE, PsychINFO, Web of Science, China National Knowledge Infrastructure (CNKI), and Wan Fang Database were utilized for identifying the eligible randomized controlled trials (RCTs) without language restrictions, up to March 2022. The pooled incidence of RID was conducted by the Relative risk (RR) with its 95% confidence interval (CI) through the STATA software under a random-effects model. This systematic review and cumulative analysis were registered on PROSPERO (ID: CRD42022335188). Results: Fourteen RCTs met our predefined inclusion criteria, enrolling 1,572 participants (mean age: 46.5–56 years). The cumulative results revealed that patients pretreated with aloe vera were associated with a significantly lower risk of RID compared to those without aloe vera usage (RR = 0.76, 95% CI: 0.67–0.88, p < 0.001; heterogeneity: I2 = 79.8%, p < 0.001). In the subgroup analysis, the pooled incidence of Grade 2–4, Grade 2, and Grade 3 RID was also dramatically lower in the group of aloe vera as compared to the placebo group [RR = 0.44 (0.27, 0.74), 0.58 (0.36, 0.94), and 0.27 (0.12, 0.59) in Grade 2–4, Grade 2, and Grade 3, respectively]. However, in regard to Grade 4 RID, the combined RR indicated that the incidence of RID was comparable between aloe vera and the control group (RR = 0.13, 95% CI: 0.02–1.01, p = 0.051; heterogeneity: I2 = 0.0%, p = 0.741). The sensitivity analyses showed that there was no substantial change in the new pooled RR after eliminating anyone of the included study. Conclusion: The current cumulative analysis revealed that patients pretreated with aloe vera were less likely to suffer from RID than the controls without using aloe vera. Based on this finding, the prophylactic application of aloe vera might significantly reduce the incidence of RID, especially in Grade 2 and Grade 3 RID. Further large-sample multicenter RCTs are still warranted to confirm these findings and for better clinical application.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Integrated Traditional Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Liying Zheng
- Postgraduate Department, First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Yi Zhou
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qianru Jin
- Second School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yanjing Wu
- Department of Skin & Cosmetic, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hanzhou, Zhejiang, China
- *Correspondence: Yanjing Wu,
| |
Collapse
|
12
|
Ghosh A. Biological and cellular responses of humans to high-level natural radiation: A clarion call for a fresh perspective on the linear no-threshold paradigm. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503478. [PMID: 35649671 DOI: 10.1016/j.mrgentox.2022.503478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 06/15/2023]
Abstract
There remains considerable uncertainty in obtaining risk estimates of adverse health outcomes of chronic low-dose radiation. In the absence of reliable direct data, extrapolation through the linear no-threshold (LNT) hypothesis forms the cardinal tenet of all risk assessments for low doses (≤ 100 mGy) and for the radiation protection principle of As Low As Reasonably Achievable (ALARA). However, as recent evidences demonstrate, LNT assumptions do not appropriately reflect the biology of the cell at the low-dose end of the dose-response curve. In this regard, human populations living in high-level natural radiation areas (HLNRA) of the world can provide valuable insights into the biological and cellular effects of chronic radiation to facilitate improved precision of the dose-response relationship at low doses. Here, data obtained over decades of epidemiological and radiobiological studies on HLNRA populations is summarized. These studies do not show any evidence of unfavourable health effects or adverse cellular effects that can be correlated with high-level natural radiation. Contrary to the assumptions of LNT, no excess cancer risks or untoward pregnancy outcomes have been found to be associated with cumulative radiation dose or in-utero exposures. Molecular biology-driven studies demonstrate that chronic low-dose activates several cellular defence mechanisms that help cells to sense, recover, survive, and adapt to radiation stress. These mechanisms include stress-response signaling, DNA repair, immune alterations and most importantly, the radiation-induced adaptive response. The HLNRA data is consistent with the new evolving paradigms of low-dose radiobiology and can help develop the theoretical framework of an alternate dose-response model. A rational integration of radiobiology with epidemiology data is imperative to reduce uncertainties in predicting the potential health risks of chronic low doses of radiation.
Collapse
Affiliation(s)
- Anu Ghosh
- Animal House Facility & Radiation Signaling Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
13
|
Ionizing radiation-induced DNA damage responses affect cell compressibility. Biochem Biophys Res Commun 2022; 603:116-122. [DOI: 10.1016/j.bbrc.2022.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 12/14/2022]
|
14
|
Gao Y, Su YP, Li XL, Lei SJ, Chen HF, Cui SY, Zhang SF, Zou JM, Liu QJ, Sun QF. ATM and TP53 Polymorphisms Modified Susceptibility to Radiation-Induced Lens Opacity in Natural High Background Radiation Area, China. Int J Radiat Biol 2022; 98:1235-1242. [PMID: 34995174 DOI: 10.1080/09553002.2022.2024294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose: A population-based case-control study was conducted in Yangjiang and Enping areas in South China to assess whether the risk of lens opacity induced by natural high background radiation exposure is modulated by polymorphisms of ATM and TP53.Materials and methods: A total of 133 cases who were diagnosed with cortical and posterior subcapsular (PSC) opacity were recruited, and 419 healthy controls were selected through counter-matching in terms of radiation status. Genomic DNA from all the participants was genotyped with the Illumina platform for four single nucleotide polymorphisms of ATM (rs189037, rs373759, and rs4585) and TP53 (rs1042522). The cumulative lens dose received during the entire life was estimated based on annual indoor and outdoor radiation doses and gender- and age-specific occupancy factors. Non-conditional logistic regression was performed to calculate odds ratio (OR) and 95% confidence intervals (95% CI).Results: ATM rs189037 and TP53 rs1042522 were significantly related to cortical and PSC opacity. The risk of opacity was higher when individuals carried the A allele of ATM rs189037 and C allele of TP53 rs1042522, compared with GG genotype. ATM rs189037 A allele carriers (AG/AA) and TP53 rs1042522 C allele carriers (CG/CC) combined with a cumulative lens dose of 100 mGy or higher showed statistically significant opacity risks (OR =5.51, 95% CI: 1.47-20.66; OR =2.69, 95% CI: 1.10-6.60).Conclusion: The A allele of ATM rs189037 and C allele of TP53 rs1042522 increase the risk of lens opacity induced by radiation. These polymorphisms in ATM and TP53 might modify the risk of cortical and PSC opacity induced by chronic and prolonged low-dose radiation.
Collapse
Affiliation(s)
- Yu Gao
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Yin-Ping Su
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Xiao-Liang Li
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Shu-Jie Lei
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Hui-Feng Chen
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Shi-Yue Cui
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Su-Fen Zhang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Jian-Ming Zou
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Qing-Jie Liu
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Quan-Fu Sun
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| |
Collapse
|
15
|
Checker R, Sharma D, Sandur SK, Toyokuni S. Role and management of oxidative stress in human disease. Free Radic Res 2021; 55:755-757. [PMID: 34665986 DOI: 10.1080/10715762.2021.1991083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, India.,Homi Bhabha National Institute, Anushaktinagar, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, India.,Homi Bhabha National Institute, Anushaktinagar, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Trombay, India.,Homi Bhabha National Institute, Anushaktinagar, India
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University, Graduate School of Medicine Nagoya, Japan
| |
Collapse
|