1
|
Zhou X, Liu P, Wang X. Temporal Lobe Necrosis Following Radiotherapy in Nasopharyngeal Carcinoma: New Insight Into the Management. Front Oncol 2021; 10:593487. [PMID: 33552967 PMCID: PMC7859432 DOI: 10.3389/fonc.2020.593487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Cerebral radiation necrosis (CRN) is one of the most prominent sequelae following radiation therapy for nasopharyngeal carcinoma (NPC), which might have devastating effects on patients' quality of life (QOL). Advances in histopathology and neuro-radiology have shed light on the management of CRN more comprehensively, yet effective therapeutic interventions are still lacking. CRN was once regarded as progressive and irreversible, however, in the past 20 years, with the application of intensity-modulated radiation therapy (IMRT), both the incidence and severity of CRN have declined. In addition, newly developed medical agents including bevacizumab-a humanized monoclonal antibody against vascular endothelial growth factor (VEGF), nerve growth factor (NGF), monosialotetrahexosylganglioside (GM1), etc., have shown great potency in successfully reversing radiation-induced CRN. As temporal lobes are most frequently compromised in NPC patients, this review will summarize the state-of-the-art progress regarding the incidence, pathophysiology, prevention, treatment, and prognosis of temporal lobe necrosis (TLN) after IMRT in NPC.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peiyao Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoshen Wang
- Department of Radiation Oncology, Eye and ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Oshita J, Okazaki T, Mitsuhara T, Imura T, Nakagawa K, Otsuka T, Kurose T, Tamura T, Abiko M, Takeda M, Kawahara Y, Yuge L, Kurisu K. Early Transplantation of Human Cranial Bone-derived Mesenchymal Stem Cells Enhances Functional Recovery in Ischemic Stroke Model Rats. Neurol Med Chir (Tokyo) 2020; 60:83-93. [PMID: 31956170 PMCID: PMC7040434 DOI: 10.2176/nmc.oa.2019-0186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We analyzed the cell characteristics, neuroprotective, and transplantation effects of human cranial bone-derived mesenchymal stem cells (hcMSCs) in ischemic stroke model rats compared with human iliac bone-derived mesenchymal stem cells (hiMSCs). The expressions of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) as neurotrophic factors were analyzed in both MSCs. hiMSCs or hcMSCs were intravenously administered into ischemic stroke model rats at 3 or 24 h after middle cerebral artery occlusion (MCAO) and neurological function was evaluated. The survival rate of neuroblastoma × glioma hybrid cells (NG108-15) after 3 or 24 h oxidative or inflammatory stress and the neuroprotective effects of hiMSCs or hcMSCs-conditioned medium (CM) on 3 or 24 h oxidative or inflammatory stress-exposed NG108-15 cells were analyzed. The expressions of BDNF and VEGF were higher in hcMSCs than in hiMSCs. hcMSCs transplantation at 3 h after MCAO resulted in significant functional recovery compared with that in the hiMSCs or control group. The survival rate of stress-exposed NG108-15 was lower after 24 h stress than after 3 h stress. The survival rates of NG108-15 cells cultured with hcMSCs-CM after 3 h oxidative or inflammatory stress were significantly higher than in the control group. Our results suggest that hcMSCs transplantation in the early stage of ischemic stroke suppresses the damage of residual nerve cells and leads to functional recovery through the strong expressions of neurotrophic factors. This is the first report demonstrating a functional recovery effect after ischemic stroke following hcMSCs transplantation.
Collapse
Affiliation(s)
- Jumpei Oshita
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Takahito Okazaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Takafumi Mitsuhara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Takeshi Imura
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Kei Nakagawa
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Takashi Otsuka
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Tomoyuki Kurose
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | - Masaru Abiko
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Masaaki Takeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | - Louis Yuge
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University.,Space Bio-Laboratories Co., Ltd
| | - Kaoru Kurisu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
3
|
Liu Q, Wu Q, Zeng Z, Xia L, Huang Y. Clinical effect and mechanism of acupuncture and moxibustion on occupational hand-arm vibration disease: A retrospective study. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Abiko M, Mitsuhara T, Okazaki T, Imura T, Nakagawa K, Otsuka T, Oshita J, Takeda M, Kawahara Y, Yuge L, Kurisu K. Rat Cranial Bone-Derived Mesenchymal Stem Cell Transplantation Promotes Functional Recovery in Ischemic Stroke Model Rats. Stem Cells Dev 2018; 27:1053-1061. [PMID: 29786481 DOI: 10.1089/scd.2018.0022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The functional disorders caused by central nervous system (CNS) diseases, such as ischemic stroke, are clinically incurable and current treatments have limited effects. Previous studies suggested that cell-based therapy using mesenchymal stem cells (MSCs) exerts therapeutic effects for ischemic stroke. In addition, the characteristics of MSCs may depend on their sources. Among the derived tissues of MSCs, we have focused on cranial bones originating from the neural crest. We previously demonstrated that the neurogenic potential of human cranial bone-derived MSCs (cMSCs) was higher than that of human iliac bone-derived MSCs. Therefore, we presumed that cMSCs have a higher therapeutic potential for CNS diseases. However, the therapeutic effects of cMSCs have not yet been elucidated in detail. In the present study, we aimed to demonstrate the therapeutic effects of transplantation with rat cranial bone-derived MSCs (rcMSCs) in ischemic stroke model rats. The mRNA expression of brain-derived neurotrophic factor and nerve growth factor was significantly stronger in rcMSCs than in rat bone marrow-derived MSCs (rbMSCs). Ischemic stroke model rats in the rcMSC transplantation group showed better functional recovery than those in the no transplantation and rbMSC transplantation groups. Furthermore, in the in vitro study, the conditioned medium of rcMSCs significantly suppressed the death of neuroblastoma × glioma hybrid cells (NG108-15) exposed to oxidative and inflammatory stresses. These results suggest that cMSCs have potential as a candidate cell-based therapy for CNS diseases.
Collapse
Affiliation(s)
- Masaru Abiko
- 1 Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Takafumi Mitsuhara
- 1 Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Takahito Okazaki
- 1 Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Takeshi Imura
- 2 Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Kei Nakagawa
- 2 Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Takashi Otsuka
- 2 Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Jumpei Oshita
- 1 Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Masaaki Takeda
- 1 Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| | - Yumi Kawahara
- 3 Space Bio-Laboratories Co., Ltd. , Hiroshima, Japan
| | - Louis Yuge
- 2 Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan .,3 Space Bio-Laboratories Co., Ltd. , Hiroshima, Japan
| | - Kaoru Kurisu
- 1 Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University , Hiroshima, Japan
| |
Collapse
|
5
|
Cao X, Liu Y, Li J, Xiang L, Osada H, Qi J. Bioactivity-guided isolation of neuritogenic triterpenoids from the leaves of Ilex latifolia Thunb. Food Funct 2018; 8:3688-3695. [PMID: 28937158 DOI: 10.1039/c7fo00981j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ilex latifolia Thunb is a traditional Chinese tea and herbal medicine. In this study, one new triterpene saponin (1) and six known triterpenoids (2-7) were isolated from the methanol extract of I. latifolia using a PC12 cell bioassay system. The structures and stereochemistry of these compounds were elucidated using spectroscopic methods and chemical derivatization. This new triterpene saponin (1) was characterized as an ursolic type acid with a 19α-hydroxyl and a trisaccharide moiety at C-3. Compound 1 significantly promoted the neurite outgrowth in PC12 cells by 52% at 10 μM, whereas compounds 2-7 showed less neuritogenic activity. Structure activity relationship studies indicated that introducing a trisaccharide moiety at C-3 is important for the neuritogenic activity, but the sugar group at C-28 decreased this activity. In addition, compound 1 increased the neurite outgrowth length in primary cortical neuron cells of mice and also exhibited a neuronal protection effect on H2O2-damaged PC12 cells at optimum concentrations.
Collapse
Affiliation(s)
- Xueli Cao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | |
Collapse
|
6
|
Vieira DB, Gamarra LF. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int J Nanomedicine 2016; 11:5381-5414. [PMID: 27799765 PMCID: PMC5077137 DOI: 10.2147/ijn.s117210] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review summarizes articles that have been reported in literature on liposome-based strategies for effective drug delivery across the blood–brain barrier. Due to their unique physicochemical characteristics, liposomes have been widely investigated for their application in drug delivery and in vivo bioimaging for the treatment and/or diagnosis of neurological diseases, such as Alzheimer’s, Parkinson’s, stroke, and glioma. Several strategies have been used to deliver drug and/or imaging agents to the brain. Covalent ligation of such macromolecules as peptides, antibodies, and RNA aptamers is an effective method for receptor-targeting liposomes, which allows their blood–brain barrier penetration and/or the delivery of their therapeutic molecule specifically to the disease site. Additionally, methods have been employed for the development of liposomes that can respond to external stimuli. It can be concluded that the development of liposomes for brain delivery is still in its infancy, although these systems have the potential to revolutionize the ways in which medicine is administered.
Collapse
Affiliation(s)
| | - Lionel F Gamarra
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Hwang H, Kim HS, Jeong HS, Rajasaheb BT, Kim M, Oh PS, Lim ST, Sohn MH, Jeong HJ. Liposomal angiogenic peptides for ischemic limb perfusion: comparative study between different administration methods. Drug Deliv 2016; 23:3619-3628. [DOI: 10.1080/10717544.2016.1212951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Hyosook Hwang
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| | - Hyeon-Soo Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| | - Hwan-Seok Jeong
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| | - Bagalkot Tarique Rajasaheb
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| | - Minjoo Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| | - Phil-Sun Oh
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| | - Seok Tae Lim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| | - Myung-Hee Sohn
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| | - Hwan-Jeong Jeong
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Cyclotron Research Center, Institute for Medical Sciences, Biomedical Research Institute, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital, Jeonju, South Korea
| |
Collapse
|
8
|
Wang XS, Ying HM, He XY, Zhou ZR, Wu YR, Hu CS. Treatment of cerebral radiation necrosis with nerve growth factor: A prospective, randomized, controlled phase II study. Radiother Oncol 2016; 120:69-75. [PMID: 27181260 DOI: 10.1016/j.radonc.2016.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/01/2016] [Accepted: 04/16/2016] [Indexed: 01/21/2023]
Abstract
PURPOSE A prospective, placebo controlled phase II trial was conducted to test the efficacy of Nerve Growth Factor (NGF) for the treatment of symptomatic temporal lobe necrosis (TLN). MATERIALS AND METHODS Patients with progressive TLN were randomly assigned to either the control or the study group in a 1:1 ratio. The control group received corticosteroids with gradually reduced dosage. The study group received NGF with corticosteroids. NGF was dissolved in 2mL normal saline and injected intramuscularly at 18μg/time, once a day for 2months. The efficacy was evaluated by both the objective and subjective methods every 3-4months after treatment. The objective method compared volumes of the necrotic masses on MRI before and after treatment. The subjective method compared the neurocognitive score as evaluated by the mini-mental status examination (MMSE). RESULTS Twenty-eight cases were enrolled into this study. The objective evaluation showed that the response rate (RR) in the study group was higher than the control group. The ratio was 10 versus 2 (p=0.006), and 12 versus 3 (p=0.002) at 3-4months and 6-8months after intervention, respectively. The subjective evaluation demonstrated both groups were effective in controlling the necrosis related symptoms in the first 6months after treatment. But NGF was more effective than corticosteroids at 9months (13 versus 4, p=0.001). The only observed side effect was mild pain at the injection site in 3 patients in the study group. CONCLUSIONS Our results demonstrated that the process of TLN is not irreversible. NGF is more effective in recovering TLN than corticosteroids with little side effect. NGF has a longer duration in controlling the necrosis related symptoms than corticosteroids.
Collapse
Affiliation(s)
- Xiao Shen Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College of Fudan University, China
| | - Hong Mei Ying
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College of Fudan University, China
| | - Xia Yun He
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College of Fudan University, China
| | - Zheng Rong Zhou
- Department of Diagnostic Radiology, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College of Fudan University, China
| | - Yong Ru Wu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College of Fudan University, China
| | - Chao Su Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College of Fudan University, China.
| |
Collapse
|
9
|
Kuo YC, Lin CC. Rescuing apoptotic neurons in Alzheimer's disease using wheat germ agglutinin-conjugated and cardiolipin-conjugated liposomes with encapsulated nerve growth factor and curcumin. Int J Nanomedicine 2015; 10:2653-72. [PMID: 25878499 PMCID: PMC4388084 DOI: 10.2147/ijn.s79528] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Liposomes with cardiolipin (CL) and wheat germ agglutinin (WGA) were developed to permeate the blood–brain barrier and treat Alzheimer’s disease. WGA-conjugated and CL-incorporated liposomes (WGA-CL-liposomes) were used to transport nerve growth factor (NGF) and curcumin (CUR) across a monolayer of human brain-microvascular endothelial cells regulated by human astrocytes and to protect SK-N-MC cells against apoptosis induced by β-amyloid1–42 (Aβ1–42) fibrils. An increase in the CL mole percentage in lipids increased the liposomal diameter, absolute zeta potential value, entrapment efficiency of NGF and CUR, release of NGF, biocompatibility, and viability of SK-N-MC cells with Aβ1–42, but decreased the atomic ratio of nitrogen to phosphorus and release of CUR. In addition, an increase in the WGA concentration for grafting enhanced the liposomal diameter, atomic ratio of nitrogen to phosphorus, and permeability of NGF and CUR across the blood–brain barrier, but reduced the absolute zeta potential value and biocompatibility. WGA-CL-liposomes carrying NGF and CUR could be promising colloidal delivery carriers for future clinical application in targeting the blood–brain barrier and inhibiting neurotoxicity.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| | - Ching-Chun Lin
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan, Republic of China
| |
Collapse
|
10
|
Tiebosch IACW, Crielaard BJ, Bouts MJRJ, Zwartbol R, Salas-Perdomo A, Lammers T, Planas AM, Storm G, Dijkhuizen RM. Combined treatment with recombinant tissue plasminogen activator and dexamethasone phosphate-containing liposomes improves neurological outcome and restricts lesion progression after embolic stroke in rats. J Neurochem 2012; 123 Suppl 2:65-74. [DOI: 10.1111/j.1471-4159.2012.07945.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ivo A. C. W. Tiebosch
- Biomedical MR Imaging & Spectroscopy Group; Image Sciences Institute; University Medical Center Utrecht; Utrecht; The Netherlands
| | - Bart J. Crielaard
- Department of Pharmaceutics; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht; The Netherlands
| | - Mark J. R. J. Bouts
- Biomedical MR Imaging & Spectroscopy Group; Image Sciences Institute; University Medical Center Utrecht; Utrecht; The Netherlands
| | - René Zwartbol
- Biomedical MR Imaging & Spectroscopy Group; Image Sciences Institute; University Medical Center Utrecht; Utrecht; The Netherlands
| | - Angelica Salas-Perdomo
- Department of Brain Ischemia and Neurodegeneration; Institute for Biomedical Research of Barcelona; Spanish Research Council (CSIC); Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS); Barcelona; Spain
| | | | - Anna M. Planas
- Department of Brain Ischemia and Neurodegeneration; Institute for Biomedical Research of Barcelona; Spanish Research Council (CSIC); Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS); Barcelona; Spain
| | | | - Rick M. Dijkhuizen
- Biomedical MR Imaging & Spectroscopy Group; Image Sciences Institute; University Medical Center Utrecht; Utrecht; The Netherlands
| |
Collapse
|
11
|
Ruozi B, Belletti D, Bondioli L, De Vita A, Forni F, Vandelli MA, Tosi G. Neurotrophic factors and neurodegenerative diseases: a delivery issue. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 102:207-47. [PMID: 22748832 DOI: 10.1016/b978-0-12-386986-9.00009-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurotrophic factors (NTFs) represent one of the most stimulating challenge in neurodegenerative diseases, due to their potential in neurorestoring and neuroprotection. Despite the large number of proofs-of-concept and evidences of their activity, most of the clinical trials, mainly regarding Parkinson's disease and Alzheimer's disease, demonstrated several failures of the therapeutic intervention. A large number of researches were conducted on this hot topic of neuroscience, clearly evidencing the advantages of NTF approach, but evidencing the major limitations in its application. The inability in crossing the blood-brain barrier and the lack of selectivity actually represent some of the most highlighted limits of NTFs-based therapy. In this review, beside an overview of NTF activity versus the main neuropathological disorders, a summary of the most relevant approaches, from invasive to noninvasive strategies, applied for improving NTF delivery to the central nervous systems is critically considered and evaluated.
Collapse
Affiliation(s)
- B Ruozi
- Department of Pharmaceutical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Wang X, Ying H, Zhou Z, Hu C, Eisbruch A. Successful treatment of radiation-induced temporal lobe necrosis with mouse nerve growth factor. J Clin Oncol 2010; 29:e166-8. [PMID: 21149661 DOI: 10.1200/jco.2010.31.7081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Chiaretti A, Antonelli A, Mastrangelo A, Pezzotti P, Tortorolo L, Tosi F, Genovese O. Interleukin-6 and nerve growth factor upregulation correlates with improved outcome in children with severe traumatic brain injury. J Neurotrauma 2008; 25:225-34. [PMID: 18352836 DOI: 10.1089/neu.2007.0405] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Secondary brain damage after traumatic brain injury (TBI) involves neuro-inflammatory mechanisms that are mainly dependent on the intracerebral production of cytokines. Interleukin-6 (IL-6) may have a role both in the pathogenesis of neuronal damage and in the recovery mechanisms of injured neurons through the modulation of nerve growth factor (NGF) biosynthesis. However, the relationship between IL-6 and NGF expression and the severity and outcome of TBI remains controversial. We have conducted a prospective observational clinical study to determine whether the concentration of IL-6 and NGF in the cerebrospinal fluid (CSF) of children with TBI correlates with the severity of the injury and neurologic outcome of patients. CSF samples were collected from 29 children at 2 h (time T1) and 48 h (time T2) after severe TBI, and from 31 matched controls. TBI severity was evaluated by Glasgow Coma Scale (GCS) and neurologic outcome by Glasgow Outcome Score (GOS). CSF concentrations of IL-6 and NGF were measured by immunoenzymatic assays. Early NGF concentrations (T1) correlated significantly with head injury severity, whereas no correlation was found between GCS and IL-6. Furthermore, IL-6 and NGF upregulation after injury was associated with better neurologic outcomes. Based on these findings, we posit that NGF expression is a useful marker of brain damage following severe TBI. Moreover, the early upregulation of both IL-6 and NGF, which correlates with a favorable neurologic outcome, may reflect an endogenous attempt at neuroprotection in response to the damaging biochemical and molecular cascades triggered by traumatic insult.
Collapse
Affiliation(s)
- Antonio Chiaretti
- Pediatric Intensive Care Unit, Catholic University Medical School, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Jang SW, Okada M, Sayeed I, Xiao G, Stein D, Jin P, Ye K. Gambogic amide, a selective agonist for TrkA receptor that possesses robust neurotrophic activity, prevents neuronal cell death. Proc Natl Acad Sci U S A 2007; 104:16329-34. [PMID: 17911251 PMCID: PMC2042206 DOI: 10.1073/pnas.0706662104] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nerve growth factor (NGF) binds to TrkA receptor and triggers activation of numerous signaling cascades, which play critical roles in neuronal plasticity, survival, and neurite outgrowth. To mimic NGF functions pharmacologically, we developed a high-throughput screening assay to identify small-molecule agonists for TrkA receptor. The most potent compound, gambogic amide, selectively binds to TrkA, but not TrkB or TrkC, and robustly induces its tyrosine phosphorylation and downstream signaling activation, including Akt and MAPKs. Further, it strongly prevents glutamate-induced neuronal cell death and provokes prominent neurite outgrowth in PC12 cells. Gambogic amide specifically interacts with the cytoplasmic juxtamembrane domain of TrkA receptor and triggers its dimerization. Administration of this molecule in mice substantially diminishes kainic acid-triggered neuronal cell death and decreases infarct volume in the transient middle cerebral artery occlusion model of stroke. Thus, gambogic amide might not only establish a powerful platform for dissection of the physiological roles of NGF and TrkA receptor but also provide effective treatments for neurodegenerative diseases and stroke.
Collapse
Affiliation(s)
| | | | | | - Ge Xiao
- Centers for Disease Control and Prevention, Inorganic Toxicology Laboratory, 4770 Buford Highway, Mail Stop F-18, Atlanta, GA 30341
| | | | - Peng Jin
- Human Genetics, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Keqiang Ye
- Departments of *Pathology and Laboratory Medicine
- To whom all correspondence should be addressed. E-mail:
| |
Collapse
|