1
|
Luo Y, Che X, Zheng G, Liu Z, Xie D, Wang L. Microfluidic Preparation and Evaluation of Multivesicular Liposomes Containing Gastrodin for Oral Delivery across the Blood-Brain Barrier. Mol Pharm 2024; 21:5607-5618. [PMID: 39367851 DOI: 10.1021/acs.molpharmaceut.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
In this study, multivesicular liposomes (MVLs) were prepared by microfluidic technology and used for delivering gastrodin (GAS), a water-soluble drug, across the blood-brain barrier (BBB). The formulations and preparation parameters in preparing gastrodin multivesicular liposomes (GAS-MVLs) were both optimized. Some properties of GAS-MVLs including morphology, particle size, encapsulation efficiency, and in vitro release were evaluated. An in vitro BBB model was established by coculturing mouse brain endothelial cells (bEnd.3) and astrocytes (C8-D1A). The permeability of GAS-MVLs across the BBB model was evaluated. Finally, the permeability of GAS-MVLs across BBB was evaluated by in vivo pharmacokinetics in mice. The concentrations of GAS in the blood and brain were determined by high-performance liquid chromatography (HPLC), and then brain-targeting efficiency (BTE), relative uptake rate (Re), and peak concentration ratio (Ce) were calculated. The results showed that, using a Y-type microfluidic chip and setting the flow rate ratio of the second aqueous phase to the W/O emulsion phase at 23, with a total flow rate of 0.184 m/s, the prepared GAS-MVLs showed an obvious multivesicular structure and a relatively narrow distribution of particle sizes. The prepared GAS-MVLs were spherical with a dense structure. The average particle size was 2.09 ± 0.17 μm. The average encapsulation rate was (34.47 ± 0.39)%. The particle size of MVLs prepared by the microfluidic method was much smaller than that prepared by the traditional method, which was usually larger than 10 μm. After 6 h from the beginning of the administration, the apparent transmittance of GAS-MVLs in the in vitro BBB model was 67.71%, which was 1.92 times higher than that of the GAS solution. In vivo pharmacokinetic study showed that the intracerebral area under curve (AUC) of GAS-MVLs was 5.68 times higher than that of the GAS solution, and the e peak concentration (Cmax) was 2.036 times higher than that of the GAS solution. BTE was 1.945, intracerebral Re was 5.688, and Ce was 2.036. Both in vitro and in vivo experiment results showed that GAS-MVLs prepared by microfluidic technology in this study significantly delivered GAS across BBB and enriched GAS in the brain. It provides a possibility for brain-targeting delivery of GAS in the prevention and treatment of central nervous system diseases by oral administration and lays the foundation for further development of oral brain-targeted preparations of GAS.
Collapse
Affiliation(s)
- Yongming Luo
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xin Che
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Guangyan Zheng
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zemei Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Die Xie
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Lihong Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
2
|
Wu Y, Rakotoarisoa M, Angelov B, Deng Y, Angelova A. Self-Assembled Nanoscale Materials for Neuronal Regeneration: A Focus on BDNF Protein and Nucleic Acid Biotherapeutic Delivery. NANOMATERIALS 2022; 12:nano12132267. [PMID: 35808102 PMCID: PMC9268293 DOI: 10.3390/nano12132267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023]
Abstract
Enabling challenging applications of nanomedicine and precision medicine in the treatment of neurodegenerative disorders requires deeper investigations of nanocarrier-mediated biomolecular delivery for neuronal targeting and recovery. The successful use of macromolecular biotherapeutics (recombinant growth factors, antibodies, enzymes, synthetic peptides, cell-penetrating peptide–drug conjugates, and RNAi sequences) in clinical developments for neuronal regeneration should benefit from the recent strategies for enhancement of their bioavailability. We highlight the advances in the development of nanoscale materials for drug delivery in neurodegenerative disorders. The emphasis is placed on nanoformulations for the delivery of brain-derived neurotrophic factor (BDNF) using different types of lipidic nanocarriers (liposomes, liquid crystalline or solid lipid nanoparticles) and polymer-based scaffolds, nanofibers and hydrogels. Self-assembled soft-matter nanoscale materials show favorable neuroprotective characteristics, safety, and efficacy profiles in drug delivery to the central and peripheral nervous systems. The advances summarized here indicate that neuroprotective biomolecule-loaded nanoparticles and injectable hydrogels can improve neuronal survival and reduce tissue injury. Certain recently reported neuronal dysfunctions in long-COVID-19 survivors represent early manifestations of neurodegenerative pathologies. Therefore, BDNF delivery systems may also help in prospective studies on recovery from long-term COVID-19 neurological complications and be considered as promising systems for personalized treatment of neuronal dysfunctions and prevention or retarding of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yu Wu
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
| | - Miora Rakotoarisoa
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic;
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, No. 1, Jinlian Road, Longwan District, Wenzhou 325001, China;
| | - Angelina Angelova
- CNRS, Institut Galien Paris-Saclay, Université Paris-Saclay, F-92290 Châtenay-Malabry, France; (Y.W.); (M.R.)
- Correspondence:
| |
Collapse
|
3
|
Gao D, Asghar S, Ye J, Zhang M, Hu R, Wang Y, Huang L, Yuan C, Chen Z, Xiao Y. Dual-targeted enzyme-sensitive hyaluronic acid nanogels loading paclitaxel for the therapy of breast cancer. Carbohydr Polym 2022; 294:119785. [DOI: 10.1016/j.carbpol.2022.119785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
|
4
|
High-gravity technology intensified Knoevenagel condensation-Michael addition polymerization of poly (ethylene glycol)-poly (n-butyl cyanoacrylate) for blood-brain barrier delivery. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Panda J, Satapathy BS, Sarkar R, Tudu B. A zinc ferrite nanodrug carrier for delivery of docetaxel: Synthesis, characterization and in vitro tests on C6 glioma cells. J Microencapsul 2022; 39:136-144. [PMID: 35313794 DOI: 10.1080/02652048.2022.2053757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM Docetaxel (DTX) loaded bio-compatible PLGA-PEG encapsulated zinc ferrite nanoparticles (ZFNP) formulation was developed and evaluated against C6 glioma cells. METHODS The ZFNP were characterized using XRD, FE-SEM, TEM etc. A series of drug formulations were fabricated by conjugating hydrothermally synthesized ZFNP with DTX in a PLGA-PEG matrix and optimized for drug loading. FTIR and DLS analysis of the formulation along with in vitro drug release, cytotoxicity, cellular uptake and haemolytic effect were evaluated. RESULTS Spherical, monodisperse, crystalline ZFNP with an average size of ∼28 nm were formed. The optimized formulation showed hydrodynamic diameter of ∼147 nm, surface charge of -34.8 mV, a drug loading of 6.9% (w/w) with prolonged drug release property and higher toxicity in C6 glioma cells compared to free DTX along with good internalization and negligible hemolysis. CONCLUSION The results indicate ZFNP could be effectively used as nanodrug carrier for delivery of docetaxel to glioma cells.
Collapse
Affiliation(s)
- Jnanranjan Panda
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Bhabani Sankar Satapathy
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751003, India
| | - Ratan Sarkar
- Department of Physics, Jogesh Chandra Chaudhuri College, Kolkata- 700033, India
| | - Bharati Tudu
- Department of Physics, Jadavpur University, Kolkata-700032, India
| |
Collapse
|
6
|
Microemulsion Delivery System Improves Cellular Uptake of Genipin and Its Protective Effect against Aβ1-42-Induced PC12 Cell Cytotoxicity. Pharmaceutics 2022; 14:pharmaceutics14030617. [PMID: 35335992 PMCID: PMC8950416 DOI: 10.3390/pharmaceutics14030617] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Genipin has attracted much attention for its hepatoprotective, anti-inflammatory, and neuroprotection activities. However, poor water solubility and active chemical properties limit its application in food and pharmaceutical industries. This article aimed to develop a lipid-based microemulsion delivery system to improve the stability and bioavailability of genipin. The excipients for a genipin microemulsion (GME) preparation were screened and a pseudo-ternary phase diagram was established. The droplet size (DS), zeta potential (ZP), polydispersity index (PDI), physical and simulated gastrointestinal digestion stability, and in vitro drug release properties were characterized. Finally, the effect of the microemulsion on its cellular uptake by Caco-2 cells and the protective effect on PC12 cells were investigated. The prepared GME had a transparent appearance with a DS of 16.17 ± 0.27 nm, ZP of −8.11 ± 0.77 mV, and PDI of 0.183 ± 0.013. It exhibited good temperature, pH, ionic strength, and simulated gastrointestinal digestion stability. The in vitro release and cellular uptake data showed that the GME had a lower release rate and better bioavailability compared with that of free genipin. Interestingly, the GME showed a significantly better protective effect against amyloid-β (Aβ1-42)-induced PC12 cell cytotoxicity than that of the unencapsulated genipin. These findings suggest that the lipid-based microemulsion delivery system could serve as a promising approach to improve the application of genipin.
Collapse
|
7
|
Li XZ, Li CC, Jiang CY, Jing ZL, Gu XZ, Ni HJ, Qiu WW. Synthesis of plant-derived cholesterol from bisnoralcohol. Steroids 2022; 178:108967. [PMID: 35085676 DOI: 10.1016/j.steroids.2022.108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
Currently, the market demand of the non-animal-derived cholesterol is increasing. A novel synthetic route of producing cholesterol was developed through multiple reactions from plant-sourced and commercially available bisnoralcohol (BA). The key reaction conditions, including solvents, reaction temperatures, bases and reducing agents of the route were investigated and optimized. In this straightforward synthetic pathway of cholesterol, most of the reaction steps possess high conversions with average yields of 94%, and the overall yield is up to 74% (5 steps) from the BA. The epicholesterol and were also synthesized. This promising route offers economical and efficient strategies for potential large-scale production of plant-derived cholesterol.
Collapse
Affiliation(s)
- Xing-Zi Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Chemical Engineering, East China Normal University, Shanghai 200241, China
| | - Chen-Chen Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Chemical Engineering, East China Normal University, Shanghai 200241, China; ECNU-JIAERKE Pharm. Steroids Green Manufacturing Laboratory, East China Normal University, Shanghai 200241, China
| | - Cheng-Yu Jiang
- Department of Research and Development, Jiangsu Jiaerke Pharmaceuticals Group Co., Ltd., Zhenglu Town, Changzhou 213111, China
| | - Zhi-Liang Jing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Chemical Engineering, East China Normal University, Shanghai 200241, China
| | - Xiang-Zhong Gu
- Department of Research and Development, Jiangsu Jiaerke Pharmaceuticals Group Co., Ltd., Zhenglu Town, Changzhou 213111, China; ECNU-JIAERKE Pharm. Steroids Green Manufacturing Laboratory, East China Normal University, Shanghai 200241, China
| | - Hao-Jie Ni
- ECNU-JIAERKE Pharm. Steroids Green Manufacturing Laboratory, East China Normal University, Shanghai 200241, China
| | - Wen-Wei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Chemical Engineering, East China Normal University, Shanghai 200241, China; ECNU-JIAERKE Pharm. Steroids Green Manufacturing Laboratory, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
8
|
Ribovski L, Hamelmann NM, Paulusse JMJ. Polymeric Nanoparticles Properties and Brain Delivery. Pharmaceutics 2021; 13:2045. [PMID: 34959326 PMCID: PMC8705716 DOI: 10.3390/pharmaceutics13122045] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
Safe and reliable entry to the brain is essential for successful diagnosis and treatment of diseases, but it still poses major challenges. As a result, many therapeutic approaches to treating disorders associated with the central nervous system (CNS) still only show limited success. Nano-sized systems are being explored as drug carriers and show great improvements in the delivery of many therapeutics. The systemic delivery of nanoparticles (NPs) or nanocarriers (NCs) to the brain involves reaching the neurovascular unit (NVU), being transported across the blood-brain barrier, (BBB) and accumulating in the brain. Each of these steps can benefit from specifically controlled properties of NPs. Here, we discuss how brain delivery by NPs can benefit from careful design of the NP properties. Properties such as size, charge, shape, and ligand functionalization are commonly addressed in the literature; however, properties such as ligand density, linker length, avidity, protein corona, and stiffness are insufficiently discussed. This is unfortunate since they present great value against multiple barriers encountered by the NPs before reaching the brain, particularly the BBB. We further highlight important examples utilizing targeting ligands and how functionalization parameters, e.g., ligand density and ligand properties, can affect the success of the nano-based delivery system.
Collapse
Affiliation(s)
| | | | - Jos M. J. Paulusse
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology and TechMed Institute for Health and Biomedical Technologies, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands; (L.R.); (N.M.H.)
| |
Collapse
|
9
|
Jiang F, Ren J, Gao Y, Wang J, Zhao Y, Dai F. Legumain-induced intracerebrally crosslinked vesicles for suppressing efflux transport of Alzheimer's disease multi-drug nanosystem. Bioact Mater 2021; 6:1750-1764. [PMID: 33313452 PMCID: PMC7718144 DOI: 10.1016/j.bioactmat.2020.11.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
Brain barrier is both a protective permeability hurdle and a limitation site where therapeutic agents are excluded to enter the target region. Designing drug vehicle to overcome this notorious barrier bottle is challenging. Herein, we construct a stimuli-responsive self-assembled nanovesicle that delivers water-soluble drugs to prevent the efflux transport of brain barriers by responding to the endogenously occurring signals in Alzheimer's disease (AD) brain microenvironment. Once stimuli-responsive vesicles are accumulated in intracerebrally, the intrinsically occurring legumain endopeptidase cleaves the Ac-Ala-Ala-Asn-Cys-Asp (AK) short peptide on the drug vesicles to expose the 1,2 thiol amino group to cyclize with the cyano groups on 2-cyano-6-aminobenzothiazole (CABT) of the chaperone vesicles, thus triggering the formation of cross-linked micrometre-scale vesicles. Such a structural alteration completely prevents further brain barriers efflux. The superior neuroprotective capacity of cross-linked vesicles is validated in senescence accelerated mouse prone 8 (SAMP8). This smart multi-drug delivery vesicle is promising to serve as a powerful system for AD treatment and can be adapted for the therapy of other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Fuxin Jiang
- School of Material Science and Engineering, Tianjin Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China
| | - Jian Ren
- School of Material Science and Engineering, Tianjin Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China
| | - Yachai Gao
- School of Material Science and Engineering, Tianjin Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China
| | - Jinna Wang
- School of Material Science and Engineering, Tianjin Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China
| | - Yiping Zhao
- School of Material Science and Engineering, Tianjin Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China
| | - Fengying Dai
- School of Material Science and Engineering, Tianjin Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
10
|
Song M, Xia W, Tao Z, Zhu B, Zhang W, Liu C, Chen S. Self-assembled polymeric nanocarrier-mediated co-delivery of metformin and doxorubicin for melanoma therapy. Drug Deliv 2021; 28:594-606. [PMID: 33729072 PMCID: PMC7996084 DOI: 10.1080/10717544.2021.1898703] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Malignant melanoma is a life-threatening form of skin cancer with a low response rate to single-agent chemotherapy. Although combined therapies of metformin (MET) and doxorubicin (DOX) are effective in treating a variety of cancers, including breast cancer, their different physicochemical properties and administration routines reduce the effective co-accumulation of both drugs in tumors. Nanoparticles (NPs) have been demonstrated to potentially improve drug delivery efficiency in cancer therapy of, for example, liver and lung cancers. Hence, in this study, we prepared pH-sensitive, biocompatible, tumor-targeting NPs based on the conjugation of biomaterials, including sodium alginate, cholesterol, and folic acid (FCA). As expected, since cholesterol and folic acid are two essentials, but insufficient, substrates for melanoma growth, we observed that the FCA NPs specifically and highly effectively accumulated in xenograft melanoma tumors. Taking advantage of the FCA NP system, we successfully co-delivered a combination of MET and DOX into melanoma tumors to trigger pyroptosis, apoptosis, and necroptosis (PANoptosis) of the melanoma cells, thus blocking melanoma progression. Combined, the establishment of such an FCA NP system provides a promising vector for effective drug delivery into melanoma and increases the possibility and efficiency of drug combinations for cancer treatment.
Collapse
Affiliation(s)
- Mingming Song
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wentao Xia
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zixuan Tao
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Bin Zhu
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chang Liu
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Khatoon R, Alam MA, Sharma PK. Current approaches and prospective drug targeting to brain. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Transport of PEGylated-PLA nanoparticles across a blood brain barrier model, entry into neuronal cells and in vivo brain bioavailability. J Control Release 2020; 328:679-695. [PMID: 32979453 DOI: 10.1016/j.jconrel.2020.09.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/09/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Treatments of neurodegenerative diseases (NDDs) are severely hampered by the presence of the blood-brain barrier (BBB) precluding efficient brain drug delivery. The development of drug nanocarriers aims at increasing the brain therapeutic index would represent a real progress in brain disease management. PEGylated polyester nanoparticles (NPs) are intensively tested in clinical trials for improved drug delivery. Our working hypothesis was that some surface parameters and size of NPs could favor their penetration across the BBB and their neuronal uptake. Polymeric material PEG-b-PLA diblocks were synthesized by ring opening polymerisation (ROP) with PEG2000 or PEG5000. A library of polymeric PEG-b-PLA diblocks NPs with different physicochemical properties was produced. The toxicity, endocytosis and transcytosis through the brain microvascular endothelial cells were monitored as well as the neuronal cells uptake. In vitro results lead to the identification of favourable surface parameters for the NPs endocytosis into vascular endothelial cells. NPs endocytosis took place mainly by macropinocytosis while transcytosis was partially controlled by their surface chemistry and size. In vivo assays on a zebrafish model showed that the kinetic of NPs in circulation is dependent on PEG coating properties. In vivo findings also showed a low but similar translocation of PEG-b-PLA diblocks NPs to the CNS, regardless of their properties. In conclusion, modulation of surface PEG chain length and NPs size impact the endocytosis rate of NPs but have little influence on cell barriers translocation; while in vivo biodistribution is influenced by surface PEG chain density.
Collapse
|
13
|
Hu X, Yang F, Liao Y, Li L, Zhao G, Zhang L. Docetaxel-Loaded Cholesterol-PEG Co-Modified Poly (n-Butyl) Cyanoacrylate Nanoparticles for Antitumor Drug Pulmonary Delivery: Preparation, Characterization, and in vivo Evaluation. Int J Nanomedicine 2020; 15:5361-5376. [PMID: 32801694 PMCID: PMC7395705 DOI: 10.2147/ijn.s249511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND AIM Polymeric nanoparticles (NPs) have received much attention as promising carrier systems in lung cancer and brain metastases. METHODS Here, for the first time, we investigated the feasibility of using inhaled cholesterol-PEG co-modified poly (n-butyl) cyanoacrylate NPs (CLS-PEG NPs) of docetaxel (DTX) for sustained pulmonary drug delivery in cancer metastasis. RESULTS Spray-dried or freeze-dried NPs yielded sustained drug release in vitro. In vitro inhalation evaluation data indicated that the inhalation formulation had better inhalability. Compared with intravenous (IV) administration, pharmacokinetic data suggested that the inhalation formulation prolonged plasma concentration of DTX for greater than 24 h and is more quickly and completely absorbed into the rat lung after intratracheal (IT) administration. Furthermore, freeze-dried powders were found to increase the t1/2 and area under curve (AUC) by 2.3 and 6.5 fold compared to the free drug after IT administration, and spray-dried powders were found to increase the t1/2 and AUC by 3.4 and 8.8 fold, respectively. After pulmonary administration of the inhalation formulation, DTX appeared to prolong the pulmonary absorption time. In addition, the inhalation formulation was distributed to the brain in a sustained release manner. CONCLUSION These experimental results demonstrated that freeze- and spray-dried powders have the potential for pulmonary sustained release, and they also have the potential to be used as a novel treatment for the delivery of drugs that pass through the air-blood barrier and enter the brain and are efficient carriers for the treatment of brain metastasis.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing100053, People’s Republic of China
| | - Feifei Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100193, People’s Republic of China
| | - Yonghong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing100193, People’s Republic of China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing100053, People’s Republic of China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing100053, People’s Republic of China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing100053, People’s Republic of China
| |
Collapse
|
14
|
Yokel RA. Nanoparticle brain delivery: a guide to verification methods. Nanomedicine (Lond) 2020; 15:409-432. [DOI: 10.2217/nnm-2019-0169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many reports conclude nanoparticle (NP) brain entry based on bulk brain analysis. Bulk brain includes blood, cerebrospinal fluid and blood vessels within the brain contributing to the blood–brain and blood–cerebrospinal fluid barriers. Considering the brain as neurons, glia and their extracellular space (brain parenchyma), most studies did not show brain parenchymal NP entry. Blood–brain and blood–cerebrospinal fluid barriers anatomy and function are reviewed. Methods demonstrating brain parenchymal NP entry are presented. Results demonstrating bulk brain versus brain parenchymal entry are classified. Studies are reviewed, critiqued and classified to illustrate results demonstrating bulk brain versus parenchymal entry. Brain, blood and peripheral organ NP timecourses are compared and related to brain parenchymal entry evidence suggesting brain NP timecourse informs about brain parenchymal entry.
Collapse
Affiliation(s)
- Robert A Yokel
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA
| |
Collapse
|
15
|
Mahmoud NN, Alhusban AA, Ali JI, Al-Bakri AG, Hamed R, Khalil EA. Preferential Accumulation of Phospholipid-PEG and Cholesterol-PEG Decorated Gold Nanorods into Human Skin Layers and Their Photothermal-Based Antibacterial Activity. Sci Rep 2019; 9:5796. [PMID: 30962476 PMCID: PMC6453979 DOI: 10.1038/s41598-019-42047-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/21/2019] [Indexed: 02/03/2023] Open
Abstract
Herein, a library of gold nanorods (GNR) decorated with polyethylene glycol-thiol (PEG-SH) containing different functionalities were synthesized and characterized by optical absorption spectroscopy, zeta potential, dynamic light scattering (DLS), transmission electron microscope (TEM) and proton nuclear magnetic resonance (1H-NMR). The colloidal stability of GNR when exposed to skin, and their preferential accumulation into excised human skin layers were investigated. Confocal laser scanning microscopy, transmission electron microscope (TEM) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) were utilized to track the penetration of GNR into different skin layers. The results demonstrated that cholesterol-PEG coated GNR were preferentially loaded up in the upper layers of skin (stratum corneum), while phospholipid-PEG coated counterparts were drastically deposited in skin dermis. Neutral methoxy-PEG-coated GNR were distributed in both SC and dermis skin layers, while charged GNR (anionic-carboxylic acid-PEG-GNR and cationic-amine-PEG-GNR) revealed a minimal accumulation into skin. DSPE-PEG-GNR and Chol-PEG-GNR demonstrated antibacterial activities against Staphylococcus aureus (S aureus) at MIC values of 0.011 nM and 0.75 nM, respectively. Photothermal treatment for S. aureus at sub-MIC concentrations resulted in a significant bactericidal effect when using Chol-PEG-GNR but not DSPE-PEG-GNR. Gold-based nanoscale systems have great value as a promising platform for skin diseases therapy.
Collapse
Affiliation(s)
- Nouf N Mahmoud
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan.
| | - Ala A Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Jamila Isabilla Ali
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Amal G Al-Bakri
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Enam A Khalil
- Department of Pharmaceutics & Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
16
|
Vauthier C. A journey through the emergence of nanomedicines with poly(alkylcyanoacrylate) based nanoparticles. J Drug Target 2019; 27:502-524. [PMID: 30889991 DOI: 10.1080/1061186x.2019.1588280] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Starting in the late 1970s, the pioneering work of Patrick Couvreur gave birth to the first biodegradable nanoparticles composed of a biodegradable synthetic polymer. These nanoparticles, made of poly(alkylcyanoacrylate) (PACA), were the first synthetic polymer-based nanoparticulate drug carriers undergoing a phase III clinical trial so far. Analyzing the journey from the birth of PACA nanoparticles to their clinical evaluation, this paper highlights their remarkable adaptability to bypass various drug delivery challenges found on the way. At present, PACA nanoparticles include a wide range of nanoparticles that can associate drugs of different chemical nature and can be administered in vivo by different routes. The most recent technologies giving the nanoparticles customised functions could also be implemented on this family of nanoparticles. Through different examples, this paper discusses the seminal role of the PACA nanoparticles' family in the development of nanomedicines.
Collapse
Affiliation(s)
- Christine Vauthier
- a Institut Galien Paris Sud, UMR CNRS 8612 , Université Paris-Sud , Chatenay-Malabry Cedex , France
| |
Collapse
|
17
|
Wang H, Mu X, Yang J, Liang Y, Zhang XD, Ming D. Brain imaging with near-infrared fluorophores. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Ross AM, Mc Nulty D, O'Dwyer C, Grabrucker AM, Cronin P, Mulvihill JJ. Standardization of research methods employed in assessing the interaction between metallic-based nanoparticles and the blood-brain barrier: Present and future perspectives. J Control Release 2019; 296:202-224. [DOI: 10.1016/j.jconrel.2019.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 01/31/2023]
|
19
|
Tehrani SF, Bernard-Patrzynski F, Puscas I, Leclair G, Hildgen P, Roullin VG. Length of surface PEG modulates nanocarrier transcytosis across brain vascular endothelial cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 16:185-194. [DOI: 10.1016/j.nano.2018.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/02/2018] [Accepted: 11/28/2018] [Indexed: 11/26/2022]
|
20
|
Khan AR, Yang X, Fu M, Zhai G. Recent progress of drug nanoformulations targeting to brain. J Control Release 2018; 291:37-64. [DOI: 10.1016/j.jconrel.2018.10.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
|
21
|
Dutta L, Mukherjee B, Chakraborty T, Das MK, Mondal L, Bhattacharya S, Gaonkar RH, Debnath MC. Lipid-based nanocarrier efficiently delivers highly water soluble drug across the blood-brain barrier into brain. Drug Deliv 2018; 25:504-516. [PMID: 29426257 PMCID: PMC6058568 DOI: 10.1080/10717544.2018.1435749] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 12/30/2022] Open
Abstract
Delivering highly water soluble drugs across blood-brain barrier (BBB) is a crucial challenge for the formulation scientists. A successful therapeutic intervention by developing a suitable drug delivery system may revolutionize treatment across BBB. Efforts were given here to unravel the capability of a newly developed fatty acid combination (stearic acid:oleic acid:palmitic acid = 8.08:4.13:1) (ML) as fundamental component of nanocarrier to deliver highly water soluble zidovudine (AZT) as a model drug into brain across BBB. A comparison was made with an experimentally developed standard phospholipid-based nanocarrier containing AZT. Both the formulations had nanosize spherical unilamellar vesicular structure with highly negative zeta potential along with sustained drug release profiles. Gamma scintigraphic images showed both the radiolabeled formulations successfully crossed BBB, but longer retention in brain was observed for ML-based formulation (MGF) as compared to soya lecithin (SL)-based drug carrier (SYF). Plasma and brain pharmacokinetic data showed less clearance, prolonged residence time, more bioavailability and sustained release of AZT from MGF in rats compared to those data of the rats treated with SYF/AZT suspension. Thus, ML may be utilized to successfully develop drug nanocarrier to deliver drug into brain across BBB, in a sustained manner for a prolong period of time and may provide an effective therapeutic strategy for many diseases of brain. Further, many anti-HIV drugs cannot cross BBB sufficiently. Hence, the developed formulation may be a suitable option to carry those drugs into brain for better therapeutic management of HIV.
Collapse
Affiliation(s)
- Lopamudra Dutta
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Tapash Chakraborty
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Malay Kumar Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Laboni Mondal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | | | - Raghuvir H. Gaonkar
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Mita Chatterjee Debnath
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|