1
|
Jansook P, Sigurdsson HH, Loftsson T. A look to the future: cyclodextrins and cyclodextrin-based drug delivery to the retina. Expert Opin Drug Deliv 2025:1-18. [PMID: 40105773 DOI: 10.1080/17425247.2025.2482049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION Retinal diseases are a leading cause of vision loss, affecting millions of people worldwide. Current treatment options are based on invasive methods such as intravitreal injections. Therefore, there is a need for alternative therapeutic strategies that are both effective and more patient-friendly. AREAS COVERED Topical drug delivery has gained attention as a preferred noninvasive approach, although it is hindered by several ocular barriers. Cyclodextrin (CD)-based nanoparticles have emerged as a promising strategy to overcome these limitations by enhancing drug permeability in the posterior segment of the eye. This review discusses the potential of CDs as enabling pharmaceutical excipients, their role in improving ocular drug bioavailability, and provides examples of CD-based eye drop formulations currently under development or undergoing clinical trials. Also, the role of CDs as active pharmaceutical agents in ophthalmology is discussed. EXPERT OPINION CD-based nanoparticle eye drops present a promising solution and have shown clinical success. CDs are approved pharmaceutical excipients for eye drop formulations and can act as active pharmaceutical ingredients for the treatment of inherent retinal diseases. Future innovations in hybrid CD-based delivery systems and integration of novel therapeutic compounds could provide more efficient and targeted treatment options for retinal diseases.
Collapse
Affiliation(s)
- Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- Cyclodextrin Application and Nanotechnology-Based Delivery Systems Research Unit, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Hákon H Sigurdsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
2
|
Qi Q, Wei Y, Zhang X, Guan J, Mao S. Challenges and strategies for ocular posterior diseases therapy via non-invasive advanced drug delivery. J Control Release 2023; 361:191-211. [PMID: 37532148 DOI: 10.1016/j.jconrel.2023.07.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Posterior segment diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) are vital factor that seriously threatens human vision health and quality of life, the treatment of which poses a great challenge to ophthalmologists and ophthalmic scientists. In particular, ocular posterior drug delivery in a non-invasive manner is highly desired but still faces many difficulties such as rapid drug clearance, limited permeability and low drug accumulation at the target site. At present, many novel non-invasive topical ocular drug delivery systems are under development aiming to improve drug delivery efficiency and biocompatibility for better therapy of posterior segment oculopathy. The purpose of this review is to present the challenges in the noninvasive treatment of posterior segment diseases, and to propose strategies to tackle these bottlenecks. First of all, barriers to ocular administration were introduced based on ocular physiological structure and behavior, including analysis and discussion on the influence of ocular structures on noninvasive posterior segment delivery. Thereafter, various routes of posterior drug delivery, both invasive and noninvasive, were illustrated, along with the respective anatomical obstacles that need to be overcome. The widespread and risky application of invasive drug delivery, and the need to develop non-invasive local drug delivery with alternative to injectable therapy were described. Absorption routes through topical administration and strategies to enhance ocular posterior drug delivery were then discussed. As a follow-up, an up-to-date research advances in non-invasive delivery systems for the therapy of ocular fundus lesions were presented, including different nanocarriers, contact lenses, and several other carriers. In conclusion, it seems feasible and promising to treat posterior oculopathy via non-invasive local preparations or in combination with appropriate devices.
Collapse
Affiliation(s)
- Qi Qi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yidan Wei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
3
|
Attia SA, MacKay JA. Protein and polypeptide mediated delivery to the eye. Adv Drug Deliv Rev 2022; 188:114441. [PMID: 35817213 PMCID: PMC10049092 DOI: 10.1016/j.addr.2022.114441] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022]
Abstract
Hybrid or recombinant protein-polymers, peptide-based biomaterials, and antibody-targeted therapeutics are widely explored for various ocular conditions and vision correction. They have been noted for their potential biocompatibility, potency, adaptability, and opportunities for sustained drug delivery. Unique to peptide and protein therapeutics, their production by cellular translation allows their precise modification through genetic engineering. To a greater extent than drug delivery to other systems, delivery to the eye can benefit from the combination of locally-targeted administration and protein-based specificity. Consequently, a range of delivery platforms and administration methods have been exploited to address the ocular delivery of peptide and protein biomaterials. This review discusses a sample of preclinical and clinical opportunities for peptide-based drug delivery to the eye.
Collapse
Affiliation(s)
- Sara Aly Attia
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
4
|
Peng C, Kuang L, Zhao J, Ross AE, Wang Z, Ciolino JB. Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020. J Control Release 2022; 345:625-645. [PMID: 35321827 DOI: 10.1016/j.jconrel.2022.03.031] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To perform a bibliometric analysis in the field of ocular drug delivery research to characterize the current international trends and to present visual representations of the past and emerging trends on ocular drug delivery research over the past decade. METHOD In this cross-sectional study, a bibliometric analysis of data retrieved and extracted from the Web of Science Core Collection (WoSCC) database was performed to analyze evolution and theme trends on ocular drug delivery research from January 1, 2001, to December 31, 2020. A total of 4334 articles on ocular drug delivery were evaluated for specific characteristics, such as publication year, journals, authors, institutions, countries/regions, references, and keywords. Co-authorship analysis, co-occurrence analysis, co-citation analysis, and network visualization were constructed by VOSviewer. Some important subtopics identified by bibliometric characterization were further discussed and reviewed. RESULTS From 2001 to 2020, the annual global publications increased by 746.15%, from 52 to 440. International Journal of Pharmaceutics published the most manuscripts (250 publications) and produced the highest citations (9509 citations), followed by Investigative Ophthalmology & Visual Science (202 publications) and Journal of Ocular Pharmacology and Therapeutics (136 publications). The United States (1289 publications, 31,512 citations), the University of Florida (82 publications, 2986 citations), and Chauhan, Anuj (52 publications, 2354 citations) were the most productive and impactful institution, country, and author respectively. The co-occurrence cluster analysis of the top 100 keywords form five clusters: (1) micro/nano ocular drug delivery systems; (2) the treatment of inflammation and posterior diseases; (3) macroscopic ocular drug delivery systems/devices; (4) the characteristics of drug delivery systems; (5) and the ocular drug delivery for glaucoma treatment. Diabetic macular edema, anti-VEGF, ranibizumab, bevacizumab, micelles and latanoprost, were the latest high-frequency keywords, indicating the emerging frontiers of ocular drug delivery. Further discussions into the subtopics were provided to assist researchers to determine the range of research topics and plan research direction. CONCLUSIONS Over the last two decades there has been a progressive increase in the number of publications and citations on research related to ocular drug delivery across many countries, institutions, and authors. The present study sheds light on current trends, global collaboration patterns, basic knowledge, research hotspots, and emerging frontiers of ocular drug delivery. Novel solutions for ocular drug delivery and the treatment of inflammation and posterior diseases were the major themes over the last 20 years.
Collapse
|
5
|
Barbosa-Alfaro D, Andrés-Guerrero V, Fernandez-Bueno I, García-Gutiérrez MT, Gil-Alegre E, Molina-Martínez IT, Pastor-Jimeno JC, Herrero-Vanrell R, Bravo-Osuna I. Dexamethasone PLGA Microspheres for Sub-Tenon Administration: Influence of Sterilization and Tolerance Studies. Pharmaceutics 2021; 13:pharmaceutics13020228. [PMID: 33562155 PMCID: PMC7915986 DOI: 10.3390/pharmaceutics13020228] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
Many diseases affecting the posterior segment of the eye require repeated intravitreal injections with corticosteroids in chronic treatments. The periocular administration is a less invasive route attracting considerable attention for long-term therapies. In the present work, dexamethasone-loaded poly(lactic-co-glycolic) acid (PLGA) microspheres (Dx-MS) were prepared using the oil-in-water (O/W) emulsion solvent evaporation technique. MS were characterized in terms of mean particle size and particle size distribution, external morphology, polymer integrity, drug content, and in vitro release profiles. MS were sterilized by gamma irradiation (25 kGy), and dexamethasone release profiles from sterilized and non-sterilized microspheres were compared by means of the similarity factor (f2). The mechanism of drug release before and after irradiation exposure of Dx-MS was identified using appropriate mathematical models. Dexamethasone release was sustained in vitro for 9 weeks. The evaluation of the in vivo tolerance was carried out in rabbit eyes, which received a sub-Tenon injection of 5 mg of sterilized Dx-MS (20–53 µm size containing 165.6 ± 3.6 µg Dx/mg MS) equivalent to 828 µg of Dx. No detectable increase in intraocular pressure was reported, and clinical and histological analysis of the ocular tissues showed no adverse events up to 6 weeks after the administration. According to the data presented in this work, the sub-Tenon administration of Dx-MS could be a promising alternative to successive intravitreal injections for the treatment of chronic diseases of the back of the eye.
Collapse
Affiliation(s)
- Deyanira Barbosa-Alfaro
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Complutense University of Madrid, 28040 Madrid, Spain; (D.B.-A.); (V.A.-G.); (E.G.-A.); (I.T.M.-M.); (I.B.-O.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Complutense University of Madrid, 28040 Madrid, Spain; (D.B.-A.); (V.A.-G.); (E.G.-A.); (I.T.M.-M.); (I.B.-O.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared) Carlos III National Institute of Health, 28040 Madrid, Spain; (I.F.-B.); (J.C.P.-J.)
| | - Ivan Fernandez-Bueno
- Thematic Research Network in Ophthalmology (Oftared) Carlos III National Institute of Health, 28040 Madrid, Spain; (I.F.-B.); (J.C.P.-J.)
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain;
| | | | - Esther Gil-Alegre
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Complutense University of Madrid, 28040 Madrid, Spain; (D.B.-A.); (V.A.-G.); (E.G.-A.); (I.T.M.-M.); (I.B.-O.)
| | - Irene Teresa Molina-Martínez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Complutense University of Madrid, 28040 Madrid, Spain; (D.B.-A.); (V.A.-G.); (E.G.-A.); (I.T.M.-M.); (I.B.-O.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared) Carlos III National Institute of Health, 28040 Madrid, Spain; (I.F.-B.); (J.C.P.-J.)
| | - José Carlos Pastor-Jimeno
- Thematic Research Network in Ophthalmology (Oftared) Carlos III National Institute of Health, 28040 Madrid, Spain; (I.F.-B.); (J.C.P.-J.)
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain;
- Department of Ophthalmology, Hospital Clínico Universitario of Valladolid, 47003 Valladolid, Spain
| | - Rocío Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Complutense University of Madrid, 28040 Madrid, Spain; (D.B.-A.); (V.A.-G.); (E.G.-A.); (I.T.M.-M.); (I.B.-O.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared) Carlos III National Institute of Health, 28040 Madrid, Spain; (I.F.-B.); (J.C.P.-J.)
- Correspondence:
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Complutense University of Madrid, 28040 Madrid, Spain; (D.B.-A.); (V.A.-G.); (E.G.-A.); (I.T.M.-M.); (I.B.-O.)
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- Thematic Research Network in Ophthalmology (Oftared) Carlos III National Institute of Health, 28040 Madrid, Spain; (I.F.-B.); (J.C.P.-J.)
| |
Collapse
|
6
|
Dexamethasone pharmacokinetics characteristics via sub-tenon microfluidic system in uveitis rabbits. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Zhao L, Huang X, Peng M, Tan Q, Lin W, Khan MA, Tang Q, Lin D. Sub-Tenon Sustained Controllable Delivery of Dexamethasone for Treating Severe Acute Experimental Uveitis. Ocul Immunol Inflamm 2019; 28:984-993. [PMID: 31429619 DOI: 10.1080/09273948.2019.1643027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To evaluate the efficacy of dexamethasone (DXM) through sub-tenon sustained controllable drug delivery system (SSCDDS) for treating severe acute experimental uveitis. METHODS Rabbits were treated with either DXM (treated group) or normal saline (control group) through SSCDDS. Clinical signs of uveitis were assessed at days 1, 3, 5, 7, and 14 after treatment. Histopathologic examinations were performed to evaluate inflammatory cell infiltration on posttreatment days 7 and 14. RESULTS All signs of experimental uveitis were reduced by SSCDDS of DXM according to clinical criteria, and the treated group had significantly less inflammation than the control group (p<0.05). Histopathologic examinations showed severe inflammation and marked inflammatory cell infiltration in the control group, but minimal inflammation in the treated group. CONCLUSIONS Sub-tenon sustained controllable delivery of DXM effectively suppresses severe acute inflammation in a rabbit model of uveitis. The proposed minimal invasive system might be a promising candidate for managing severe ocular diseases.
Collapse
Affiliation(s)
- Libei Zhao
- Department of Ophthalmology, Changsha Aier Eye Hospital, Aier School of Ophthalmology, Central South University , Changsha, China
| | - Xuetao Huang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Manqiang Peng
- Department of Ophthalmology, Changsha Aier Eye Hospital, Aier School of Ophthalmology, Central South University , Changsha, China
| | - Qian Tan
- Department of Ophthalmology, Changsha Aier Eye Hospital, Aier School of Ophthalmology, Central South University , Changsha, China
| | - Wenxiang Lin
- Department of Ophthalmology, Changsha Aier Eye Hospital, Aier School of Ophthalmology, Central South University , Changsha, China
| | - Muhammad Ahmad Khan
- Department of Ophthalmology, Changsha Aier Eye Hospital, Aier School of Ophthalmology, Central South University , Changsha, China
| | - Qiongyan Tang
- Department of Ophthalmology, Changsha Aier Eye Hospital, Aier School of Ophthalmology, Central South University , Changsha, China
| | - Ding Lin
- Department of Ophthalmology, Changsha Aier Eye Hospital, Aier School of Ophthalmology, Central South University , Changsha, China
| |
Collapse
|
8
|
Huang X, Peng M, Yang Y, Duan Y, Li K, Liu S, Ye C, Lin D. Dexamethasone distribution characteristic following controllable continuous sub-tenon drug delivery in rabbit. Drug Deliv 2017; 24:818-824. [PMID: 28509581 PMCID: PMC8241131 DOI: 10.1080/10717544.2017.1324531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 02/08/2023] Open
Abstract
Drug delivery systems are required to be safe, minimally invasive and effectively delivery drug to the target tissues. But delivery drugs to the eye has not yet satisfied this need. Here, we focused on examining the distribution of dexamethasone (DEX) in ocular and plasmic samples following controllable continuous sub-Tenon drug delivery (CCSDD) of dexamethasone disodium phosphate (DEXP) in rabbit, and to compare that with two traditional routes: subconjunctival injection and intravenous injection. The DEX concentration was analyzed by Shimadzu LC-MS 2010 system. In CCSDD group, during observed 24 h, the mean DEX level in collected samples from highest to lowest following in order: sclera, cornea, retina/choroid, iris, plasma, aqueous humor, lens and vitreous body. In ocular solid tissue, the DEX level in posterior segment is higher than in anatomic corresponding anterior segment, but it is opposite in ocular fluid tissue. High levels of DEX were maintained at 12 h in the ocular tissue immediately after the administration. Even at 24 h, the mean DEX concentration was 31.72 ng/ml and 22.40 ng/ml in aqueous and vitreous, respectively. In CCSDD group, the ocular DEX exposure (AUC0-24) is much higher and plasma exposure is much less than IV group, and it is also similar in SC group except iris. The amount of DEX levels are markedly increased in ocular tissues but it yield lower plasma levels indicating reduction of systemic absorption by CCSDD. Thus, CCSDD is an effective method of delivering DEX into anterior and posterior segment of the eye.
Collapse
Affiliation(s)
- Xuetao Huang
- Department of Ophthalmology, Changsha Aier Hospital, Aier School of Ophthalmology, Central South University, Changsha, China and
| | - Manqiang Peng
- Department of Ophthalmology, Changsha Aier Hospital, Aier School of Ophthalmology, Central South University, Changsha, China and
| | - Yezhen Yang
- Department of Ophthalmology, Changsha Aier Hospital, Aier School of Ophthalmology, Central South University, Changsha, China and
| | - Yiqin Duan
- Department of Ophthalmology, Changsha Aier Hospital, Aier School of Ophthalmology, Central South University, Changsha, China and
| | - Kuanshu Li
- Department of Ophthalmology, Changsha Aier Hospital, Aier School of Ophthalmology, Central South University, Changsha, China and
| | - Shaogang Liu
- Advanced Research Center, Central South University, Changsha, China
| | - Changhua Ye
- Department of Ophthalmology, Changsha Aier Hospital, Aier School of Ophthalmology, Central South University, Changsha, China and
| | - Ding Lin
- Department of Ophthalmology, Changsha Aier Hospital, Aier School of Ophthalmology, Central South University, Changsha, China and
| |
Collapse
|
9
|
A rapid microextraction by packed sorbent − liquid chromatography tandem mass spectrometry method for the determination of dexamethasone disodium phosphate and dexamethasone in aqueous humor of patients with uveitis. J Pharm Biomed Anal 2017; 142:343-347. [DOI: 10.1016/j.jpba.2017.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/27/2022]
|