1
|
Dutta D, Al Hoque A, Paul B, Park JH, Chowdhury C, Quadir M, Banerjee S, Choudhury A, Laha S, Sepay N, Boro P, Kaipparettu BA, Mukherjee B. EpCAM-targeted betulinic acid analogue nanotherapy improves therapeutic efficacy and induces anti-tumorigenic immune response in colorectal cancer tumor microenvironment. J Biomed Sci 2024; 31:81. [PMID: 39164686 PMCID: PMC11334571 DOI: 10.1186/s12929-024-01069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Betulinic acid (BA) has been well investigated for its antiproliferative and mitochondrial pathway-mediated apoptosis-inducing effects on various cancers. However, its poor solubility and off-target activity have limited its utility in clinical trials. Additionally, the immune modulatory role of betulinic acid analogue in the tumor microenvironment (TME) is largely unknown. Here, we designed a potential nanotherapy for colorectal cancer (CRC) with a lead betulinic acid analogue, named as 2c, carrying a 1,2,3-triazole-moiety attached to BA through a linker, found more effective than BA for inhibiting CRC cell lines, and was chosen here for this investigation. Epithelial cell adhesion molecule (EpCAM) is highly overexpressed on the CRC cell membrane. A single-stranded short oligonucleotide sequence, aptamer (Apt), that folds into a 3D-defined architecture can be used as a targeting ligand for its specific binding to a target protein. EpCAM targeting aptamer was designed for site-specific homing of aptamer-conjugated-2c-loaded nanoparticles (Apt-2cNP) at the CRC tumor site to enhance therapeutic potential and reduce off-target toxicity in normal cells. We investigated the in vitro and in vivo therapeutic efficacy and anti-tumorigenic immune response of aptamer conjugated nanotherapy in CRC-TME. METHODS After the characterization of nanoengineered aptamer conjugated betulinic acid nanotherapy, we evaluated therapeutic efficacy, tumor targeting efficiency, and anti-tumorigenic immune response using cell-based assays and mouse and rat models. RESULTS We found that Apt-2cNP improved drug bioavailability, enhanced its biological half-life, improved antiproliferative activity, and minimized off-target cytotoxicity. Importantly, in an in vivo TME, Apt-2cNP showed promising signs of anti-tumorigenic immune response (increased mDC/pDC ratio, enhanced M1 macrophage population, and CD8 T-cells). Furthermore, in vivo upregulation of pro-apoptotic while downregulation of anti-apoptotic genes and significant healing efficacy on cancer tissue histopathology suggest that Apt-2cNP had predominantly greater therapeutic potential than the non-aptamer-conjugated nanoparticles and free drug. Moreover, we observed greater tumor accumulation of the radiolabeled Apt-2cNP by live imaging in the CRC rat model. CONCLUSIONS Enhanced therapeutic efficacy and robust anti-tumorigenic immune response of Apt-2cNP in the CRC-TME are promising indicators of its potential as a prospective therapeutic agent for managing CRC. However, further studies are warranted.
Collapse
Affiliation(s)
- Debasmita Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA.
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Ashique Al Hoque
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Brahamacharry Paul
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, USA
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
- Department of Psychology and Neuroscience Program, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Department of Human Physiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | | | - Soumik Laha
- CSIR- Indian Institute of Chemical Biology, Kolkata, India
| | - Nayim Sepay
- Department of Chemistry, Jadavpur University, Kolkata, India
| | - Priyanka Boro
- CSIR- Indian Institute of Chemical Biology, Kolkata, India
| | | | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| |
Collapse
|
2
|
Rout S, Satapathy BS, Sahoo RN, Pattnaik S. Telmisartan loaded lipid nanocarrier as a potential repurposing approach to treat glioma: characterization, apoptosis evaluation in U87MG cells, pharmacokinetic and molecular simulation study. NANOTECHNOLOGY 2024; 35:425101. [PMID: 39025086 DOI: 10.1088/1361-6528/ad64e0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The study explores anticancer potential of telmisartan (TS) loaded lipid nanocarriers (TLNs) in glioma cells as a potential repurposing nanomodality along with estimation of drug availability at rat brain. Experimental TLNs were produced by previously reported method and characterized.In vitroanticancer efficacy of experimental TLNs was estimated by MTT, confocal microscopy, and FACs analysis in glioma cells. Plasma and brain pharmacokinetic (PK) parameters were also analysed by LCMS/MS. Spherical, nanosized, homogenous, unilamellar, TLNs were reported having desirable drug loading (9.5% ± 0.6%), negative zeta potential and sustained TS release tendency. FITC-TLNs were sufficiently internalized into U87MG cells line within 0.5 h incubation period. IC50for TLNs was considerably higher than free TS in the tested glioma cell lines. Further, TLNs induced superior apoptotic effect in U87MG cells than TS. PK (plasma/brain) data depicted higher AUC,Vss, MRT with lower Cltfor TLNs suggesting improved bioavailability,in vivoresidence and sustained drug availability than free TS administration. Docking studies rationalizedin vitro/in vivoresults as preferably higher binding affinity (docking score:12.4) was detected for TS with glioma proteins. Further,in vivostudies in glioma bearing xenograft model is underway for futuristic clinical validation of TLNs.
Collapse
Affiliation(s)
- Sagar Rout
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Bhabani Sankar Satapathy
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Rudra Narayan Sahoo
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Snigdha Pattnaik
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| |
Collapse
|
3
|
Satapathy BS, Mishra A, Biswal SK, Pattnaik S, Parida R, Biswal B, Shaw TK. Encapsulation of Alpinia leaf essential oil in nanophytosome-embedded gel as novel strategy to treat periodontal infections: evaluation of antimicrobial effectiveness, pharmacokinetic, in vitro-ex vivo correlation and in silico studies. J Microencapsul 2024; 41:327-344. [PMID: 38829223 DOI: 10.1080/02652048.2024.2354234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/08/2024] [Indexed: 06/05/2024]
Abstract
AIM The work reports a novel nanophytosomal gel encapsulating Alpinia galanga (L.) Willd leaf essential oil to treat periodontal infections. METHODS Alpinia oil-loaded nanophytosomes (ANPs) were formulated by lipid layer hydration technique and were evaluated by FESEM, cryo-TEM, loading efficiency, zeta potential, particle size, release profile etc. Selected ANPs-loaded gel (ANPsG) was evaluated by both in vitro and in vivo methods. RESULTS Selected ANPs were spherical, unilamellar, 49.32 ± 2.1 nm size, 0.45 PDI, -46.7 ± 0.8 mV zeta potential, 9.8 ± 0.5% (w/w) loading, 86.4 ± 3.02% (w/w) loading efficiency with sustained release profile. ANPsG showed good spreadability (6.8 ± 0.3 gm.cm/sec), extrudability (79.33 ± 1.5%), viscosity (36522 ± 0.82 cps), mucoadhesive strength (44.56 ± 3.5 gf) with sustained ex vivo release tendency. Satisfied ZOI and MIC was observed for ANPsG against periodontal bacteria vs. standard/control. ANPsG efficiently treated infection in ligature induced periodontitis model. Key pharmacokinetic parameters like AUC, MRT, Vd were enhanced for ANPsG. CONCLUSION ANPsG may be investigated for futuristic clinical studies.
Collapse
Affiliation(s)
| | - Abhishek Mishra
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, India
| | | | - Snigdha Pattnaik
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, India
| | - Reena Parida
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, India
| | - Biswabhusan Biswal
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, India
| | - Tapan Kumar Shaw
- Department of Pharmaceutical Technology, JIS University, Kolkata, India
| |
Collapse
|
4
|
Zhang M, Zhong S, An L, Xiang P, Hu N, Huang W, Tian Y, Battaglia G, Tian X, Wu M. Advancing Central Nervous System Drug Delivery with Microtubule-Dependent Transcytosis of Novel Aqueous Compounds. Biomater Res 2024; 28:0051. [PMID: 39050687 PMCID: PMC11268840 DOI: 10.34133/bmr.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
The challenge of delivering therapeutics to the central nervous system due to the restrictive nature of the blood-brain barrier (BBB) is a substantial hurdle in neuropharmacology. Our research introduces a breakthrough approach using microtubule-dependent transcytosis facilitated by novel aqueous compounds. We synthesized a series of red-emitting pyran nitrile derivatives. The molecular structure of compounds, photophysical properties, and water solubility were characterized. BBB permeability of BN1 was assessed in an in vitro BBB model. The transmembrane transport mechanism was next analyzed. The derivative was injected in the wild-type mouse for evaluation of brain penetration and biodistribution in the brain. We further investigated the potential of BN1-functionalized BBB-nonpenetrated silica nanoparticles for brain targeting. This compound demonstrated an ability to form endosomes within the phospholipid layer, thus enabling efficient penetration of the BBB via microtubule-mediated transcytosis, as evidenced in vitro model. This was further confirmed by in vivo experiments that BN1 displays the excellent BBB penetration and retained in brain parenchyma. Furthermore, BBB-impermeable mesoporous silica nanoparticle codelivery system markedly enhanced the transport efficiency to the brain in vivo by BN1-functionalized. These findings indicate that our designed aqueous molecules not only are capable of traversing the BBB but also serve as a viable new strategy for central-nervous-system-targeted drug delivery.
Collapse
Affiliation(s)
- Mingzhu Zhang
- Huaxi MR Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology and National Clinical Research Centre for Geriatrics,
West China Hospital of Sichuan University, Chengdu, China
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui,
School of Life Science, Anqing Normal University, Anqing 246011 China
- Department of Chemistry,
Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Hefei 230039, China
| | - Shaoqi Zhong
- Huaxi MR Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology and National Clinical Research Centre for Geriatrics,
West China Hospital of Sichuan University, Chengdu, China
- West China Biobanks, Clinical Research Management Department,
West China Hospital of Sichuan University, Chengdu 610000, China
| | - Lujing An
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui,
School of Life Science, Anqing Normal University, Anqing 246011 China
| | - Pan Xiang
- Huaxi MR Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology and National Clinical Research Centre for Geriatrics,
West China Hospital of Sichuan University, Chengdu, China
| | - Na Hu
- Huaxi MR Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology and National Clinical Research Centre for Geriatrics,
West China Hospital of Sichuan University, Chengdu, China
| | - Wei Huang
- West China Biobanks, Clinical Research Management Department,
West China Hospital of Sichuan University, Chengdu 610000, China
| | - Yupeng Tian
- Department of Chemistry,
Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Hefei 230039, China
| | - Giuseppe Battaglia
- Huaxi MR Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology and National Clinical Research Centre for Geriatrics,
West China Hospital of Sichuan University, Chengdu, China
- Institute for the Physics for Living Systems and Department of Chemistry,
University College London, London WC1H 0AJ, UK
- Institute for Bioengineering of Catalunya (IBEC),
The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Xiaohe Tian
- Huaxi MR Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology and National Clinical Research Centre for Geriatrics,
West China Hospital of Sichuan University, Chengdu, China
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui,
School of Life Science, Anqing Normal University, Anqing 246011 China
- West China Biobanks, Clinical Research Management Department,
West China Hospital of Sichuan University, Chengdu 610000, China
| | - Min Wu
- Huaxi MR Research Centre (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology and National Clinical Research Centre for Geriatrics,
West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Wehn AC, Krestel E, Harapan BN, Klymchenko A, Plesnila N, Khalin I. To see or not to see: In vivo nanocarrier detection methods in the brain and their challenges. J Control Release 2024; 371:216-236. [PMID: 38810705 DOI: 10.1016/j.jconrel.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Nanoparticles have a great potential to significantly improve the delivery of therapeutics to the brain and may also be equipped with properties to investigate brain function. The brain, being a highly complex organ shielded by selective barriers, requires its own specialized detection system. However, a significant hurdle to achieve these goals is still the identification of individual nanoparticles within the brain with sufficient cellular, subcellular, and temporal resolution. This review aims to provide a comprehensive summary of the current knowledge on detection systems for tracking nanoparticles across the blood-brain barrier and within the brain. We discuss commonly employed in vivo and ex vivo nanoparticle identification and quantification methods, as well as various imaging modalities able to detect nanoparticles in the brain. Advantages and weaknesses of these modalities as well as the biological factors that must be considered when interpreting results obtained through nanotechnologies are summarized. Finally, we critically evaluate the prevailing limitations of existing technologies and explore potential solutions.
Collapse
Affiliation(s)
- Antonia Clarissa Wehn
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Eva Krestel
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany.
| | - Biyan Nathanael Harapan
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Department of Neurosurgery, University of Munich Medical Center, Marchioninistraße 17, 81377 Munich, Germany.
| | - Andrey Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Université de Strasbourg, 74 route du Rhin - CS 60024, 67401 Illkirch Cedex, France.
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| | - Igor Khalin
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Feodor-Lynen-Straße 17, 81377, Germany; Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14 074 Bd Henri Becquerel, 14000 Caen, France.
| |
Collapse
|
6
|
Maslizan M, Haris MS, Ajat M, Md Jamil SNA, Azhar SC, Zahid NI, Mat Azmi ID. Non-lamellar lyotropic liquid crystalline nanoparticles as nanocarriers for enhanced drug encapsulation of atorvastatin calcium and proanthocyanidins. Chem Phys Lipids 2024; 260:105377. [PMID: 38325712 DOI: 10.1016/j.chemphyslip.2024.105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Atorvastatin calcium (ATV) and proanthocyanidins (PAC) have a strong antioxidant activity, that can benefit to reduce the atherosclerotic plaque progression. Unfortunately, the bioavailability of ATV is greatly reduced due to its limited drug solubility while the PAC drug is unstable upon exposure to the atmospheric oxygen. Herein, the lyotropic liquid crystalline nanoparticles (LLCNPs) constructed by a binary mixture of soy phosphatidylcholine (SPC) and citric acid ester of monoglyceride (citrem) at different weight ratios were used to encapsulate the hydrophobic ATV and hydrophilic PAC. The LLCNPs were further characterized by small-angle X-ray scattering and dynamic light scattering. Depending on the lipid composition, the systems have a size range of 140-190 nm and were able to encapsulate both drugs in the range of 90-100%. Upon increasing the citrem content of drug-loaded LLCNPs, the hexosomes (H2) was completely transformed to an emulsified inverse micellar (L2). The optimum encapsulation efficiency (EE) of ATV and PAC were obtained in citrem/SPC weight ratio 4:1 (L2) and 1:1 (H2), respectively. There was a substantial change in the mean size and PDI of the nanoparticles upon 30 days of storage with the ATV-loaded LLCNPs exhibiting greater colloidal instability than PAC-loaded LLCNPs. The biphasic released pattern (burst released at the initial stage followed by the sustained released at the later stage) was perceived in ATV formulation, while the burst drug released pattern was observed in PAC formulations that could be attributed by its internal H2 structure. Interestingly, the cytokine studies showed that the PAC-LLCNPs promisingly up regulate the expressions of tumor necrosis factor-alpha (TNF-α) better than the drug-free and ATV-loaded LLCNPs samples. The structural tunability of citrem/SPC nanoparticles and their effect on physicochemical characteristic, biological activities and potential as an alternative drug delivery platform in the treatment of atherosclerosis are discussed.
Collapse
Affiliation(s)
- Mardhiah Maslizan
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Muhammad Salahuddin Haris
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Siti Nurul Ain Md Jamil
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Centre of Foundation Studies for Agricultural Science, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Shah Christirani Azhar
- Centre of Foundation Studies for Agricultural Science, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - N Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Centre of Foundation Studies for Agricultural Science, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
7
|
Virtanen PS, Ortiz KJ, Patel A, Blocher WA, Richardson AM. Blood-Brain Barrier Disruption for the Treatment of Primary Brain Tumors: Advances in the Past Half-Decade. Curr Oncol Rep 2024; 26:236-249. [PMID: 38329660 DOI: 10.1007/s11912-024-01497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/09/2024]
Abstract
PURPOSE OF REVIEW To review relevant advances in the past half-decade in the treatment of primary brain tumors via modification of blood-brain barrier (BBB) permeability. RECENT FINDINGS BBB disruption is becoming increasingly common in the treatment of primary brain tumors. Use of mannitol in BBB disruption for targeted delivery of chemotherapeutics via superselective intra-arterial cerebral infusion (SIACI) is the most utilized strategy to modify the BBB. Mannitol is used in conjunction with chemotherapeutics, oligonucleotides, and other active agents. Convection-enhanced delivery has become an attractive option for therapeutic delivery while bypassing the BBB. Other technologic innovations include laser interstitial thermal therapy (LITT) and focused ultrasound (FUS) which have emerged as prime modalities to directly target tumors and cause significant local BBB disruption. In the past 5 years, interest has significantly increased in studying modalities to disrupt the BBB in primary brain tumors to enhance treatment responses and improve clinical outcomes.
Collapse
Affiliation(s)
- Piiamaria S Virtanen
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kyle J Ortiz
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ajay Patel
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Angela M Richardson
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
Unnithan D, Sartaj A, Iqubal MK, Ali J, Baboota S. A neoteric annotation on the advances in combination therapy for Parkinson's disease: nanocarrier-based combination approach and future anticipation. Part II: nanocarrier design and development in focus. Expert Opin Drug Deliv 2024; 21:437-456. [PMID: 38507231 DOI: 10.1080/17425247.2024.2331216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION The current treatment modalities available for Parkinson's disease (PD) prove inadequate due to the inherent constraints in effectively transporting bioactive compounds across the blood-brain barrier. The utilization of synergistic combinations of multiple drugs in conjunction with advanced nanotechnology, emerges as a promising avenue for the treatment of PD, offering potential breakthroughs in treatment efficacy, targeted therapy, and personalized medicine. AREAS COVERED This review provides a comprehensive analysis of the efficacy of multifactorial interventions for PD, simultaneously addressing the primary challenges of conventional therapies and highlighting how advanced technologies can help overcome these limitations. Part II focuses on the effectiveness of nanotechnology for improving pharmacokinetics of conventional therapies, through the synergistic use of dual or multiple therapeutic agents into a single nanoformulation. Significant emphasis is laid on the advancements toward innovative integrations, such as CRISPR/Cas9 with neuroprotective agents and stem cells, all effectively synergized with nanocarriers. EXPERT OPINION By using drug combinations, we can leverage their combined effects to enhance treatment efficacy and mitigate side effects through lower dosages. This article is meant to give nanocarrier-mediated co-delivery of drugs and the strategic incorporation of CRISPR/Cas9, either as an independent intervention or synergized with a neuroprotective agent.
Collapse
Affiliation(s)
- Devika Unnithan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Kashif Iqubal
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
9
|
Dhara M, Al Hoque A, Sen R, Dutta D, Mukherjee B, Paul B, Laha S. Phosphorothioated amino-AS1411 aptamer functionalized stealth nanoliposome accelerates bio-therapeutic threshold of apigenin in neoplastic rat liver: a mechanistic approach. J Nanobiotechnology 2023; 21:28. [PMID: 36694259 PMCID: PMC9875447 DOI: 10.1186/s12951-022-01764-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of death globally. Even though the progressive invention of some very potent therapeutics has been seen, the success is limited due to the chemotherapeutic resistance and recurrence in HCC. Advanced targeted treatment options like immunotherapy, molecular therapy or surface-engineered nanotherapeutics could offer the benefits here owing to drug resistance over tumor heterogenicity. We have developed tumor-sensing phosphorothioate and amino-modified aptamer (AS1411)-conjugated stealth nanoliposomes, encapsulating with apigenin for precise and significant biodistribution of apigenin into the target tumor to exploit maximum bio-therapeutic assistances. The stable aptamer functionalized PEGylated nanoliposomes (Apt-NLCs) had an average vesicle size of 100-150 nm, a smooth surface, and an intact lamellarity, as ensured by DLS, FESEM, AFM, and Cryo-TEM. This study has specified in vitro process of optimum drug (apigenin) extrusion into the cancer cells by nucleolin receptor-mediated cellular internalization when delivered through modified AS1411 functionalized PEGylated nanoliposomes and ensured irreversible DNA damage in HCC. Significant improvement in cancer cell apoptosis in animal models, due to reduced clearance and higher intratumor drug accumulation along with almost nominal toxic effect in liver, strongly supports the therapeutic potential of aptamer-conjugated PEGylated nanoliposomes compared to the nonconjugated formulations in HCC. The study has established a robust superiority of modified AS1411 functionalized PEGylated nanoliposomes as an alternative drug delivery approach with momentous reduction of HCC tumor incidences.
Collapse
Affiliation(s)
- Moumita Dhara
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Ashique Al Hoque
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.,Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, USA
| | - Ramkrishna Sen
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Debasmita Dutta
- Dana Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Brahamacharry Paul
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Soumik Laha
- Central Instrument Facility, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| |
Collapse
|
10
|
Development of Liposomal Formulation for Controlled Delivery of Valacyclovir: an In Vitro Study. J Pharm Innov 2023. [DOI: 10.1007/s12247-022-09706-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Zhang H, Wen C, Li B, Yan X, Xu Y, Guo J, Hou S, Chang J, Li S, Xiao J. Phenoxyaromatic Acid Analogues as Novel Radiotherapy Sensitizers: Design, Synthesis and Biological Evaluation. Molecules 2022; 27:molecules27082428. [PMID: 35458626 PMCID: PMC9024523 DOI: 10.3390/molecules27082428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022] Open
Abstract
Radiotherapy is a vital approach for brain tumor treatment. The standard treatment for glioblastoma (GB) is maximal surgical resection combined with radiotherapy and chemotherapy. However, the non-sensitivity of tumor cells in the hypoxic area of solid tumors to radiotherapy may cause radioresistance. Therefore, radiotherapy sensitizers that increase the oxygen concentration within the tumor are promising for increasing the effectiveness of radiation. Inspired by hemoglobin allosteric oxygen release regulators, a series of novel phenoxyacetic acid analogues were designed and synthesized. A numerical method was applied to determine the activity and safety of newly synthesized compounds. In vitro studies on the evaluation of red blood cells revealed that compounds 19c (∆P50 = 45.50 mmHg) and 19t (∆P50 = 44.38 mmHg) improve the oxygen-releasing property effectively compared to positive control efaproxiral (∆P50 = 36.40 mmHg). Preliminary safety evaluation revealed that 19c exhibited no cytotoxicity towards HEK293 and U87MG cells, while 19t was cytotoxic toward both cells with no selectivity. An in vivo activity assay confirmed that 19c exhibited a radiosensitization effect on orthotopically transplanted GB in mouse brains. Moreover, a pharmacokinetic study in rats showed that 19c was orally available.
Collapse
Affiliation(s)
- Hongquan Zhang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (H.Z.); (C.W.); (X.Y.); (Y.X.); (J.G.); (S.H.); (J.C.); (S.L.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Chunxi Wen
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (H.Z.); (C.W.); (X.Y.); (Y.X.); (J.G.); (S.H.); (J.C.); (S.L.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Bingting Li
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China;
| | - Xinlin Yan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (H.Z.); (C.W.); (X.Y.); (Y.X.); (J.G.); (S.H.); (J.C.); (S.L.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yangrong Xu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (H.Z.); (C.W.); (X.Y.); (Y.X.); (J.G.); (S.H.); (J.C.); (S.L.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jialin Guo
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (H.Z.); (C.W.); (X.Y.); (Y.X.); (J.G.); (S.H.); (J.C.); (S.L.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Shi Hou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (H.Z.); (C.W.); (X.Y.); (Y.X.); (J.G.); (S.H.); (J.C.); (S.L.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jiajia Chang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (H.Z.); (C.W.); (X.Y.); (Y.X.); (J.G.); (S.H.); (J.C.); (S.L.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Song Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (H.Z.); (C.W.); (X.Y.); (Y.X.); (J.G.); (S.H.); (J.C.); (S.L.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Junhai Xiao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (H.Z.); (C.W.); (X.Y.); (Y.X.); (J.G.); (S.H.); (J.C.); (S.L.)
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: ; Tel.: +86-010-931634
| |
Collapse
|
12
|
Efficiency of lipid-based nano drug delivery systems in crossing the blood–brain barrier: A review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Chen R, Wang T, Song J, Pu D, He D, Li J, Yang J, Li K, Zhong C, Zhang J. Antiviral Drug Delivery System for Enhanced Bioactivity, Better Metabolism and Pharmacokinetic Characteristics. Int J Nanomedicine 2021; 16:4959-4984. [PMID: 34326637 PMCID: PMC8315226 DOI: 10.2147/ijn.s315705] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/11/2021] [Indexed: 12/11/2022] Open
Abstract
Antiviral drugs (AvDs) are the primary resource in the global battle against viruses, including the recent fight against corona virus disease 2019 (COVID-19). Most AvDs require multiple medications, and their use frequently leads to drug resistance, since they have poor oral bioavailability and low efficacy due to their low solubility/low permeability. Characterizing the in vivo metabolism and pharmacokinetic characteristics of AvDs may help to solve the problems associated with AvDs and enhance their efficacy. In this review of AvDs, we systematically investigated their structure-based metabolic reactions and related enzymes, their cellular pharmacology, and the effects of metabolism on AvD pharmacodynamics and pharmacokinetics. We further assessed how delivery systems achieve better metabolism and pharmacology of AvDs. This review suggests that suitable nanosystems may help to achieve better pharmacological activity and pharmacokinetic behavior of AvDs by altering drug metabolism through the utilization of advanced nanotechnology and appropriate administration routes. Notably, such AvDs as ribavirin, remdesivir, favipiravir, chloroquine, lopinavir and ritonavir have been confirmed to bind to the severe acute respiratory syndrome-like coronavirus (SARS-CoV-2) receptor and thus may represent anti-COVID-19 treatments. Elucidating the metabolic and pharmacokinetic characteristics of AvDs may help pharmacologists to identify new formulations with high bioavailability and efficacy and help physicians to better treat virus-related diseases, including COVID-19.
Collapse
Affiliation(s)
- Ran Chen
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Tingting Wang
- Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jie Song
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Daojun Pu
- Pharmaceutical Institute, Southwest Pharmaceutical Limited Company, Chongqing, 400038, People's Republic of China
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jianjun Li
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jie Yang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Kailing Li
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Cailing Zhong
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| |
Collapse
|
14
|
Garanti T, Alhnan MA, Wan KW. The potential of nanotherapeutics to target brain tumors: current challenges and future opportunities. Nanomedicine (Lond) 2021; 16:1833-1837. [PMID: 34251278 DOI: 10.2217/nnm-2021-0134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Tanem Garanti
- Faculty of Pharmacy, Cyprus International University, Haspolat, Nicosia, 99258, Cyprus via Mersin 10, Turkey
| | - Mohamed A Alhnan
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9NH, UK
| | - Ka-Wai Wan
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| |
Collapse
|
15
|
Hu Y, Hu X, Lu Y, Shi S, Yang D, Yao T. New Strategy for Reducing Tau Aggregation Cytologically by A Hairpinlike Molecular Inhibitor, Tannic Acid Encapsulated in Liposome. ACS Chem Neurosci 2020; 11:3623-3634. [PMID: 33048528 DOI: 10.1021/acschemneuro.0c00508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inhibition of Tau protein aggregation is an attractive therapeutic target for Alzheimer's disease. However, most of the inhibitors have failed in clinical trials due to the superficial understanding of inhibition mechanism and drug-transfer pharmacokinetics. Innovation of design strategy has become a top priority. To afford a hairpinlike molecular inhibitor, we introduced tannic acid, a multibranched polyphenol molecule, and its moiety, gallic acid. We showed that tannic acid could effectively inhibit Tau aggregation through a multidentate chelation mode. We then encapsulated tannic acid in a non-neurotoxic liposome by lecithin/β-sitosterol, overcoating with Tween 80. Using transwell devices, we cytologically demonstrated that tannic acid liposome can successfully be transferred across the model of a blood-brain barrier made up of mouse brain microvascular endothelial cell bEnd.3 and effectively reduce Tau aggregation induced by fibrils of Tau peptide R3 in human neuroblastoma cell SK-N-SH. This result indicates the potential therapeutic effect of tannic acid liposome on Alzheimer's disease.
Collapse
Affiliation(s)
- Yuan Hu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaochun Hu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yonglin Lu
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Shuo Shi
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Danjing Yang
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Tianming Yao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
16
|
Qian Y, Che X, Jiang J, Wang Z. Mechanisms of Blood-Retinal Barrier Disruption by HIV-1. Curr HIV Res 2020; 17:26-32. [PMID: 30873925 DOI: 10.2174/1570162x17666190315163514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
It has been found that human immunodeficiency virus (HIV)-1 RNA or antigens can be detected in the intraocular tissues of HIV-1 patients even under effective highly active anti-retroviral therapy (HAART). In vivo, blood-retinal barrier (BRB) establishes a critical, physiological guardian against microbial invasion of the eye, but may be compromised in the presence of HIV-1. The envelope glycoprotein gp120 is exposed on the surface of the HIV envelope, essential for virus entry into cells by the attachment to specific cell surface receptors. The BRB disruption by glycoprotein gp120 has been widely recognized, which is toxic to human retinal epithelial cells (RPE) and umbilical vein endothelial cells (HUVEC). The present review elaborates on various mechanisms of BRB disruption induced by HIV gp120, which may represent potential targets for the prevention of ocular HIV complications in the future.
Collapse
Affiliation(s)
- Yiwen Qian
- Department of Ophthalmology, Huashan Hospital of Fudan University, Shanghai, China
| | - Xin Che
- Department of Ophthalmology, Huashan Hospital of Fudan University, Shanghai, China
| | - Jing Jiang
- Department of Ophthalmology, Huashan Hospital of Fudan University, Shanghai, China
| | - Zhiliang Wang
- Department of Ophthalmology, Huashan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
17
|
Yokel RA. Nanoparticle brain delivery: a guide to verification methods. Nanomedicine (Lond) 2020; 15:409-432. [DOI: 10.2217/nnm-2019-0169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many reports conclude nanoparticle (NP) brain entry based on bulk brain analysis. Bulk brain includes blood, cerebrospinal fluid and blood vessels within the brain contributing to the blood–brain and blood–cerebrospinal fluid barriers. Considering the brain as neurons, glia and their extracellular space (brain parenchyma), most studies did not show brain parenchymal NP entry. Blood–brain and blood–cerebrospinal fluid barriers anatomy and function are reviewed. Methods demonstrating brain parenchymal NP entry are presented. Results demonstrating bulk brain versus brain parenchymal entry are classified. Studies are reviewed, critiqued and classified to illustrate results demonstrating bulk brain versus parenchymal entry. Brain, blood and peripheral organ NP timecourses are compared and related to brain parenchymal entry evidence suggesting brain NP timecourse informs about brain parenchymal entry.
Collapse
Affiliation(s)
- Robert A Yokel
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536-0596, USA
| |
Collapse
|
18
|
Fernandes AV, Pydi CR, Verma R, Jose J, Kumar L. Design, preparation and in vitro characterizations of fluconazole loaded nanostructured lipid carriers. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318069] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
19
|
Mondal L, Mukherjee B, Das K, Bhattacharya S, Dutta D, Chakraborty S, Pal MM, Gaonkar RH, Debnath MC. CD-340 functionalized doxorubicin-loaded nanoparticle induces apoptosis and reduces tumor volume along with drug-related cardiotoxicity in mice. Int J Nanomedicine 2019; 14:8073-8094. [PMID: 31632019 PMCID: PMC6790403 DOI: 10.2147/ijn.s220740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/28/2019] [Indexed: 12/29/2022] Open
Abstract
Background and objective Targeted drug delivery of nanoparticles decorated with site-specific recognition ligands is of considerable interest to minimize cytotoxicity of chemotherapeutics in the normal cells. The study was designed to develop CD-340 antibody-conjugated polylactic-co-glycolic acid (PLGA) nanoparticles loaded with a highly water-soluble potent anticancer drug, doxorubicin (DOX), to specifically deliver entrapped DOX to breast cancer cells. Methods The study showed how to incorporate water-soluble drug in a hydrophobic PLGA (85:15) based matrix which otherwise shows poor drug loading due to leaching effect. The optimized formulation was covalently conjugated to anti-human epidermal growth factor receptor-2 (HER2) antibody (CD-340). Surface conjugation of the ligand was assessed by flow cytometry, confocal microscopy, and gel electrophoresis. Selectivity and cytotoxicity of the experimental nanoparticles were tested on human breast cancer cells SKBR-3, MCF-7, and MDA-MB-231. Both CD-340-conjugated and unconjugated nanoparticles were undergone in vitro and in vivo characterization. Result Higher level of incorporation of DOX (8.5% W/W), which otherwise shows poor drug loading due to leaching effect of the highly water-soluble drug, was seen in this method. In HER2-overexpressing tumor xenograft model, radiolabeled antibody-conjugated nanoparticles showed preferentially more of the formulation accumulation in the tumor area when compared to the treatments with the unconjugated one or with the other control groups of mice. The ligand conjugated nanoparticles showed considerable potential in reduction of tumor growth and cardiac toxicity of DOX in mice, a prominent side-effect of the drug. Conclusion In conclusion, CD-340-conjugated PLGA nanoparticles containing DOX preferentially delivered encapsulated drug to the breast cancer cells and in breast tumor and reduced the breast tumor cells by apoptosis. Site-specific delivery of the formulation to neoplastic cells did not affect normal cells and showed a drastic reduction of DOX-related cardiotoxicity.
Collapse
Affiliation(s)
- Laboni Mondal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Kaushik Das
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | | | - Debasmita Dutta
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Shreyasi Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Murari Mohan Pal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Raghuvir H Gaonkar
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Mita Chatterjee Debnath
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
20
|
Boruah JS, Chowdhury D. Hybrid Oleic Acid‐Graphene Quantum Dot Vesicles for Drug Delivery. ChemistrySelect 2019. [DOI: 10.1002/slct.201803619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jayanta S. Boruah
- Material Nanochemistry LaboratoryPhysical Sciences DivisionInstitute of Advanced Study in Science and Technology, PaschimBoragaon, Garchuk Guwahati-781035 India
| | - Devasish Chowdhury
- Material Nanochemistry LaboratoryPhysical Sciences DivisionInstitute of Advanced Study in Science and Technology, PaschimBoragaon, Garchuk Guwahati-781035 India
| |
Collapse
|