1
|
Qian J, Guo Y, Xu Y, Wang X, Chen J, Wu X. Combination of micelles and liposomes as a promising drug delivery system: a review. Drug Deliv Transl Res 2023; 13:2767-2789. [PMID: 37278964 DOI: 10.1007/s13346-023-01368-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Among various nanocarriers, liposomes, and micelles are relatively mature drug delivery systems with the advantages of prolonging drug half-life, reducing toxicity, and improving efficacy. However, both have problems, such as poor stability and insufficient targeting. To further exploit the excellent properties of micelles and liposomes and avoid their shortcomings, researchers have developed new drug delivery systems by combining the two and making use of their respective advantages to achieve the goals of increasing the drug loading capacity, multiple targeting, and multiple drug delivery. The results have demonstrated that this new combination approach is a very promising delivery platform. In this paper, we review the combination strategies, preparation methods, and applications of micelles and liposomes to introduce the research progress, advantages, and challenges of composite carriers.
Collapse
Affiliation(s)
- Jiecheng Qian
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yankun Guo
- Department of Pharmacy, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Pharmacy, Organization Department, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youfa Xu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Shanghai Wei Er Lab, Shanghai, China
| | - Xinyu Wang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
- Shanghai Wei Er Lab, Shanghai, China.
| | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
- Shanghai Wei Er Lab, Shanghai, China.
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Yin T, Chen H, Ma A, Pan H, Chen Z, Tang X, Huang G, Liao J, Zhang B, Zheng M, Cai L. Cleavable collagenase-assistant nanosonosensitizer for tumor penetration and sonodynamic therapy. Biomaterials 2023; 293:121992. [PMID: 36603445 DOI: 10.1016/j.biomaterials.2022.121992] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Sonodynamic therapy (SDT), a combination of low-intensity ultrasound with a sonosensitizer, has been explored as a promising alternative for cancer therapy. However, condensed extracellular matrix (ECM) resulting in poor perfusion and extreme hypoxia in solid tumor potentially compromises effective SDT. Herein, we develop a novel cleavable collagenase-assistant and O2-supplied nanosonosensitizer (FePO2@HC), which is embedded through fusing collagenase (CLG) and human serum albumin (HSA), followed by encapsulating Ferric protoporphyrin (FeP) and dioxygen. As a smart carrier, HSA is stimuli-responsive and collapsed by reduced glutathione (GSH) overexpressed in tumor, resulting to the release of the components in FePO2@HC. The released CLG acting as an artificial scissor, degrades the collagen fibers in tumor, thus, breaking tumor tissue and enhancing FePO2 accumulation in tumor inner with higher than that without CLG. Simultaneously, oxygen molecules are released from FePO2 in hypoxic environment and alleviate the tumor hypoxia. As a sonosensitizer, FeP is subsequently irradiated by ultrosound wave (US) and activates surrounding dioxygen to generate amount of singlet oxygen (1O2). Contributed from the ECM-degradation, such SDT-based nanosystem with increased sonosensitizer permeability and oxygen content highly improved the tumor inhibition efficacy without toxic effects. This study presents a new paradigm for ECM depletion-based strategy of deep-seated penetration, and will expand the nanomedicine application of metalloporphyrin sonosensitizers in SDT.
Collapse
Affiliation(s)
- Ting Yin
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, 523808, PR China
| | - Huaqing Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Aiqing Ma
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, 523808, PR China.
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Xiaofan Tang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Guojun Huang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Jianhong Liao
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China; National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518112, PR China.
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, PR China.
| |
Collapse
|
3
|
Shin YB, Choi JY, Shin DH, Lee JW. Anticancer Evaluation of Methoxy Poly(Ethylene Glycol)- b-Poly(Caprolactone) Polymeric Micelles Encapsulating Fenbendazole and Rapamycin in Ovarian Cancer. Int J Nanomedicine 2023; 18:2209-2223. [PMID: 37152471 PMCID: PMC10162106 DOI: 10.2147/ijn.s394712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/25/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose We aimed to inhibit ovarian cancer (OC) development by interfering with microtubule polymerization and inhibiting mTOR signaling. To achieve this, previously developed micelles containing fenbendazole and rapamycin were applied. Methods Herein, we prepared micelles for drug delivery using fenbendazole and rapamycin at a 1:2 molar ratio and methoxy poly(ethylene glycol)-b-poly(caprolactone)(mPEG-b-PCL) via freeze-drying. We revealed their long-term storage capacity of up to 120 days. Furthermore, a cytotoxicity test was performed on the OC cell line HeyA8, and an orthotopic model was established for evaluating in vivo antitumor efficacy. Results Fenbendazole/rapamycin-loaded mPEG-b-PCL micelle (M-FR) had an average particle size of 37.2 ± 1.10 nm, a zeta potential of -0.07 ± 0.09 mV, and a polydispersity index of 0.20 ± 0.02. Additionally, the average encapsulation efficiency of fenbendazole was 75.7 ± 4.61% and that of rapamycin was 98.0 ± 1.97%. In the clonogenic assay, M-FR was 6.9 times more effective than that free fenbendazole/rapamycin. The in vitro drug release profile showed slower release in the combination formulation than in the single formulation. Conclusion There was no toxicity, and tumor growth was suppressed substantially by our formulation compared with that seen with the control. The findings of our study lay a foundation for using fenbendazole and rapamycin for OC treatment.
Collapse
Affiliation(s)
- Yu Been Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
- Correspondence: Dae Hwan Shin, College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea, Tel +82 43 261 2820, Fax +82 43 268 2732, Email
| | - Jeong-Won Lee
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Jeong-Won Lee, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea, Tel +82-2-3410-1382, Fax +82-2-3410-0630, Email
| |
Collapse
|
4
|
|
5
|
Jurczyk M, Jelonek K, Musiał-Kulik M, Beberok A, Wrześniok D, Kasperczyk J. Single- versus Dual-Targeted Nanoparticles with Folic Acid and Biotin for Anticancer Drug Delivery. Pharmaceutics 2021; 13:326. [PMID: 33802531 PMCID: PMC8001342 DOI: 10.3390/pharmaceutics13030326] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the major causes of death worldwide and its treatment remains very challenging. The effectiveness of cancer therapy significantly depends upon tumour-specific delivery of the drug. Nanoparticle drug delivery systems have been developed to avoid the side effects of the conventional chemotherapy. However, according to the most recent recommendations, future nanomedicine should be focused mainly on active targeting of nanocarriers based on ligand-receptor recognition, which may show better efficacy than passive targeting in human cancer therapy. Nevertheless, the efficacy of single-ligand nanomedicines is still limited due to the complexity of the tumour microenvironment. Thus, the NPs are improved toward an additional functionality, e.g., pH-sensitivity (advanced single-targeted NPs). Moreover, dual-targeted nanoparticles which contain two different types of targeting agents on the same drug delivery system are developed. The advanced single-targeted NPs and dual-targeted nanocarriers present superior properties related to cell selectivity, cellular uptake and cytotoxicity toward cancer cells than conventional drug, non-targeted systems and single-targeted systems without additional functionality. Folic acid and biotin are used as targeting ligands for cancer chemotherapy, since they are available, inexpensive, nontoxic, nonimmunogenic and easy to modify. These ligands are used in both, single- and dual-targeted systems although the latter are still a novel approach. This review presents the recent achievements in the development of single- or dual-targeted nanoparticles for anticancer drug delivery.
Collapse
Affiliation(s)
- Magdalena Jurczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
| | - Monika Musiał-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland
| |
Collapse
|
6
|
Zhang Z, Patel SB, King MR. Micelle-in-Liposomes for Sustained Delivery of Anticancer Agents That Promote Potent TRAIL-Induced Cancer Cell Apoptosis. Molecules 2020; 26:E157. [PMID: 33396409 PMCID: PMC7795772 DOI: 10.3390/molecules26010157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces cancer cell-specific apoptosis and has garnered intense interest as a promising agent for cancer treatment. However, the development of TRAIL has been hampered in part because most human cancer cells are resistant to TRAIL. A few small molecules including natural compounds such as piperlongumine (PL) have been reported to sensitize cancer cells to TRAIL. We prepared a novel type of nanomaterial, micelle-in-liposomes (MILs) for solubilization and delivery of PL. PL-loaded MILs were used to sensitize cancer cells to TRAIL. As visualized by cryo-TEM, micelles were successfully loaded inside the aqueous core of liposomes. The MILs increased the water solubility of PL by ~20 fold. A sustained PL release from MILs in physiologically relevant buffer over 7 days was achieved, indicating that the liposomes prevented premature drug release from the micelles in the MILs. Also demonstrated is a potent synergistic apoptotic effect in cancer cells by PL MILs in conjunction with liposomal TRAIL. MILs provide a new formulation and delivery vehicle for hydrophobic anticancer agents, which can be used alone or in combination with TRAIL to promote cancer cell death.
Collapse
Affiliation(s)
| | | | - Michael R. King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA; (Z.Z.); (S.B.P.)
| |
Collapse
|
7
|
Jo MJ, Lee YJ, Park CW, Chung YB, Kim JS, Lee MK, Shin DH. Evaluation of the Physicochemical Properties, Pharmacokinetics, and In Vitro Anticancer Effects of Docetaxel and Osthol Encapsulated in Methoxy Poly(ethylene glycol)- b-Poly(caprolactone) Polymeric Micelles. Int J Mol Sci 2020; 22:E231. [PMID: 33379376 PMCID: PMC7794789 DOI: 10.3390/ijms22010231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
Docetaxel (DTX), a taxane-based anticancer drug, and osthol (OTH), a coumarin-derivative compound, have shown anticancer effects against different types of cancers through various mechanisms. However, these drugs have low solubility in water and low oral bioavailability, and thus their clinical application is difficult. To overcome these problems, we encapsulated DTX and OTH in methoxy poly(ethylene glycol)-b-poly(caprolactone) (mPEG-b-PCL) and conducted studies in vitro and in vivo. We selected a 1:4 ratio as the optimal ratio of DTX and OTH, through combination index analysis in A549 cancer cells, and prepared micelles to evaluate the encapsulation efficiency, drug loading, particle size, and zeta potential. The in vitro drug-release profile showed that DTX/OTH-loaded mPEG-b-PCL micelles could slowly release DTX and OTH. In the clonogenic assay, DTX/OTH-loaded mPEG-b-PCL micelles showed 3.7 times higher inhibitory effect than the DTX/OTH solution. Pharmacokinetic studies demonstrated that micelles in combination with DTX and OTH exhibited increased area under curve and decreased clearance values, as compared with single micelles.
Collapse
Affiliation(s)
- Min Jeong Jo
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (M.J.J.); (Y.J.L.); (C.-W.P.); (Y.B.C.); (M.K.L.)
| | - Yu Jin Lee
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (M.J.J.); (Y.J.L.); (C.-W.P.); (Y.B.C.); (M.K.L.)
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (M.J.J.); (Y.J.L.); (C.-W.P.); (Y.B.C.); (M.K.L.)
| | - Youn Bok Chung
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (M.J.J.); (Y.J.L.); (C.-W.P.); (Y.B.C.); (M.K.L.)
| | - Jin-Seok Kim
- Drug Information Research Institute (DIRI), College of Pharmacy, Sookmyung Women’s University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Korea;
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (M.J.J.); (Y.J.L.); (C.-W.P.); (Y.B.C.); (M.K.L.)
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (M.J.J.); (Y.J.L.); (C.-W.P.); (Y.B.C.); (M.K.L.)
| |
Collapse
|
8
|
Li X, Fang J, Xin M, Li Q, Wang J, Yang H, Wu X. Rebaudioside A/TPGS mixed nanomicelles as promising nanocarriers for nimodipine ocular delivery. Drug Deliv Transl Res 2020; 11:1119-1132. [PMID: 32783152 DOI: 10.1007/s13346-020-00834-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nimodipine (NMD), a calcium channel blocker, has demonstrated benefits in treating glaucoma. However, its ocular therapeutic application remains limited due to its poor aqueous solubility, which restrains the development of an ophthalmic formulation. Thus, the present study aimed to formulate an NMD micelle ophthalmic solution to enhance the potential of NMD in an ocular topical formulation to treat glaucoma. The NMD micelle ophthalmic solution was formulated with nanocarriers composed of rebaudioside A and D-α-tocopheryl polyethylene glycol 1000 succinate. Spherical mixed micelles were optimized and obtained at a small micelle size 13.429 ± 0.181 nm with a narrow size distribution (polydispersity index 0.166 ± 0.023) and high encapsulation efficiency rate (99.59 ± 0.09%). Compared with free NMD, NMD in micelles had much greater in vitro membrane permeability and antioxidant activity. The NMD micelle ophthalmic solution was well tolerated in rabbit eyes. It profoundly improved the in vivo intraocular permeation of NMD, and in vivo intraocular pressure reduction and improved miosis were also observed. Accordingly, this NMD micelle ophthalmic solution might be a promising ocular formulation to treat glaucoma. Graphical abstract.
Collapse
Affiliation(s)
- Xuefei Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jingwang Fang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Meng Xin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.,Department of Ophthalmology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Qiqi Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jun Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hui Yang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xianggen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. .,Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
9
|
Jin Y, Wu Z, Wu C, Zi Y, Chu X, Liu J, Zhang W. Size-adaptable and ligand (biotin)-sheddable nanocarriers equipped with avidin scavenging technology for deep tumor penetration and reduced toxicity. J Control Release 2020; 320:142-158. [PMID: 31978442 DOI: 10.1016/j.jconrel.2020.01.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 01/12/2023]
Abstract
The conventional active-targeting nano-chemotherapy suffers from poor tumor tissue penetration and non-negligible toxicity due to the size/ligand dilemmas and insufficient target selectivity. In this report, a stimuli-responsive size-adaptable and ligand (biotin)-sheddable drug delivery system (DDS) combined with two-step strategy of biotin-avidin system was designed to seek a balance between tumor targeting and penetration as well as to self-scavenge the nonresponsive nanocarriers in normal tissues. This DDS was composed of 'multi-seed' polymeric liposomes (ASL-BIO-MPL) with asulacrine-loaded micelles as seeds in their aqueous cavities. The shell of such liposomes was modified with MMP-9 cleavable polymer-polypeptide functionalized with the tumor targeting ligand biotin. ASL-BIO-MPL could disintegrate into mixture of irregularly-shaped liposomes (~200 nm) and scattered tiny micelles (~40 nm) after incubation with MMP-9. The fluorescence-labeled BIO-MPL could travel to the center of the 4T1 breast tumor spheroids under the action of MMP-9, possibly benefited from the relay of released tiny micelles. Conversely, neither the biotin-modified micelles nor non-MMP-9-responsive multi-seed liposomes could penetrate into the spheroids possibly due to the potent binding-site barrier of biotin and large size, respectively. In tumor-bearing mice, ASL-BIO-MPL exhibited the strongest drug penetrability and thus the optimal inhibition of tumor growth compared to other formulations. Following administration of avidin with a rational dosage regimen, the number of apoptotic cells in normal tissues induced by ASL-BIO-MPL reduced without affecting their targeting effect, suggesting the followed administration of adivin could scavenge the DDS in non-target site. Overall, the size/ligand adapting MPL system combined with two-step strategy of biotin-avidin may provide potential avenues for nanocarriers to enhance deep tumor tissue targeting and protect normal tissues.
Collapse
Affiliation(s)
- Ya Jin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zimei Wu
- School of Pharmacy, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Chenchen Wu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yixuan Zi
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xinyu Chu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
10
|
Abstract
Dextran has become a hot research topic in drug vehicle material because of its biodegradable, nonspecific cell adhesion, resistance to protein adsorption, low price and ease of structural modification. The fate and changes of dextran in vivo are not fully understood. It is helpful to guide the design and modification of dextran drug vehicles to clarify the changes in the morphology, metabolism and function of drug targets. With the deep understanding of dextran and the emergence of new functional dextran derivatives, its application in nanodrug delivery systems will be more and more, clinically applicable delivery systems may also be available.
Collapse
|
11
|
Huang G, Huang H. Application of dextran as nanoscale drug carriers. Nanomedicine (Lond) 2018; 13:3149-3158. [DOI: 10.2217/nnm-2018-0331] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dextran is a kind of biocompatible, nontoxic and nonimmunogenic biological substance that has been widely used in drug-delivery systems. With further research and understanding of dextran and its derivatives, people can more precisely control the sequence of dextran by chemical and biosynthetic methods as needed, and modify various structures to improve the properties of dextran, such as hydrophilicity, hydrophobicity, temperature sensitivity, pH sensitivity and ionic strength sensitivity, which will further expand the application of dextran and its derivatives in drug-delivery systems. Herein, the application of dextran and its derivatives in gene transfection and drug delivery was summarized and analyzed, and the problems were studied. At the same time, its application prospects are forecasted.
Collapse
Affiliation(s)
- Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Hualiang Huang
- School of Chemistry & Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|