1
|
Kammarchedu V, Asgharian H, Zhou K, Soltan Khamsi P, Ebrahimi A. Recent advances in graphene-based electroanalytical devices for healthcare applications. NANOSCALE 2024; 16:12857-12882. [PMID: 38888429 PMCID: PMC11238565 DOI: 10.1039/d3nr06137j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Graphene, with its outstanding mechanical, electrical, and biocompatible properties, stands out as an emerging nanomaterial for healthcare applications, especially in building electroanalytical biodevices. With the rising prevalence of chronic diseases and infectious diseases, such as the COVID-19 pandemic, the demand for point-of-care testing and remote patient monitoring has never been greater. Owing to their portability, ease of manufacturing, scalability, and rapid and sensitive response, electroanalytical devices excel in these settings for improved healthcare accessibility, especially in resource-limited settings. The development of different synthesis methods yielding large-scale graphene and its derivatives with controllable properties, compatible with device manufacturing - from lithography to various printing methods - and tunable electrical, chemical, and electrochemical properties make it an attractive candidate for electroanalytical devices. This review article sheds light on how graphene-based devices can be transformative in addressing pressing healthcare needs, ranging from the fundamental understanding of biology in in vivo and ex vivo studies to early disease detection and management using in vitro assays and wearable devices. In particular, the article provides a special focus on (i) synthesis and functionalization techniques, emphasizing their suitability for scalable integration into devices, (ii) various transduction methods to design diverse electroanalytical device architectures, (iii) a myriad of applications using devices based on graphene, its derivatives, and hybrids with other nanomaterials, and (iv) emerging technologies at the intersection of device engineering and advanced data analytics. Finally, some of the major hurdles that graphene biodevices face for translation into clinical applications are discussed.
Collapse
Affiliation(s)
- Vinay Kammarchedu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Heshmat Asgharian
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Keren Zhou
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Pouya Soltan Khamsi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Aida Ebrahimi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
2
|
Pan M, Hu D, Yuan L, Yu Y, Li Y, Qian Z. Newly developed gas-assisted sonodynamic therapy in cancer treatment. Acta Pharm Sin B 2022. [PMID: 37521874 PMCID: PMC10372842 DOI: 10.1016/j.apsb.2022.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sonodynamic therapy (SDT) is an emerging noninvasive treatment modality that utilizes low-frequency and low-intensity ultrasound (US) to trigger sensitizers to kill tumor cells with reactive oxygen species (ROS). Although SDT has attracted much attention for its properties including high tumor specificity and deep tissue penetration, its anticancer efficacy is still far from satisfactory. As a result, new strategies such as gas-assisted therapy have been proposed to further promote the effectiveness of SDT. In this review, the mechanisms of SDT and gas-assisted SDT are first summarized. Then, the applications of gas-assisted SDT for cancer therapy are introduced and categorized by gas types. Next, therapeutic systems for SDT that can realize real-time imaging are further presented. Finally, the challenges and perspectives of gas-assisted SDT for future clinical applications are discussed.
Collapse
|
3
|
Abadijoo H, Khayamian MA, Faramarzpour M, Ghaderinia M, Simaee H, Shalileh S, Yazdanparast SM, Ghabraie B, Makarem J, Sarrami-Forooshani R, Abdolahad M. Healing Field: Using Alternating Electric Fields to Prevent Cytokine Storm by Suppressing Clonal Expansion of the Activated Lymphocytes in the Blood Sample of the COVID-19 Patients. Front Bioeng Biotechnol 2022; 10:850571. [PMID: 35721862 PMCID: PMC9201910 DOI: 10.3389/fbioe.2022.850571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022] Open
Abstract
In the case of the COVID-19 early diagnosis, numerous tech innovations have been introduced, and many are currently employed worldwide. But, all of the medical procedures for the treatment of this disease, up to now, are just limited to chemical drugs. All of the scientists believe that the major challenge toward the mortality of the COVID-19 patients is the out-of-control immune system activation and the subsequent cytokine production. During this process, the adaptive immune system is highly activated, and many of the lymphocytes start to clonally expand; hence many cytokines are also released. So, any attempt to harness this cytokine storm and calm down the immune outrage is appreciated. While the battleground for the immune hyperactivation is the lung ambient of the infected patients, the only medical treatment for suppressing the hypercytokinemia is based on the immunosuppressor drugs that systemically dampen the immunity with many unavoidable side effects. Here, we applied the alternating electric field to suppress the expansion of the highly activated lymphocytes, and by reducing the number of the renewed cells, the produced cytokines were also decreased. Applying this method to the blood of the COVID-19 patients in vitro showed ∼33% reduction in the average concentration of the three main cytokines after 4 days of stimulation. This method could carefully be utilized to locally suppress the hyperactivated immune cells in the lung of the COVID-19 patients without any need for systemic suppression of the immune system by the chemical drugs.
Collapse
Affiliation(s)
- Hamed Abadijoo
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Khayamian
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Ali Khayamian, , ; Mohammad Abdolahad, ,
| | - Mahsa Faramarzpour
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Ghaderinia
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Simaee
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahriar Shalileh
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mojtaba Yazdanparast
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Ghabraie
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalil Makarem
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Sarrami-Forooshani
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Mohammad Abdolahad
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Institute of Cancer, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
- UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Ali Khayamian, , ; Mohammad Abdolahad, ,
| |
Collapse
|
4
|
Lin C, Chen YZ, Wu B, Yang MT, Liu CQ, Zhao Y. Advances and prospects of ultrasound targeted drug delivery systems using biomaterial-modified micro/nanobubbles for tumor therapy. Curr Med Chem 2022; 29:5062-5075. [PMID: 35362371 DOI: 10.2174/0929867329666220331110315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
Abstract
The incidence of malignant tumors is rising rapidly and tends to be in the younger, which has been one of the most important factors endangering the safety of human life. Ultrasound micro/nanobubbles, as a noninvasive and highly specific antitumor strategy, can reach and destroy tumor tissue through their effects of cavitation and acoustic perforation under the guidance of ultrasound. Meanwhile, micro/nanobubbles are now used as a novel drug carrier, releasing drugs at a target region, especially on the prospects of biomaterial-modified micro/nanobubbles as a dual modality for drug delivery and therapeutic monitoring. and successful evaluation of the sonoporation mechanism(s), ultrasound parameters, drug type and dose will need to be addressed before translating this technology for clinical use. Therefore, this paper collects the literature on the experimental and clinical studies of ultrasound biomaterial-modified micro/nanobubbles therapy in vitro and in vivo in recent years.
Collapse
Affiliation(s)
- Chen Lin
- Medical College of China three Gorges University;Yichang; China
| | - Ye-Zi Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University; Yichang; China
| | - Bo Wu
- Medical College of China three Gorges University;Yichang; China
| | - Meng-Ting Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University; Yichang; China
| | - Chao-Qi Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University; Yichang; China
| | - Yun Zhao
- Medical College of China three Gorges University;Yichang; China
| |
Collapse
|
5
|
Shamloo A, Boroumand A, Ebrahimi S, Kalantarnia F, Maleki S, Moradi H. Modeling of an Ultrasound System in Targeted Drug Delivery to Abdominal Aortic Aneurysm: A Patient-Specific in Silico Study Based on Ligand-Receptor Binding. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:967-974. [PMID: 34958631 DOI: 10.1109/tuffc.2021.3138868] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Targeted drug delivery methods have shown a significant impact on enhancing drug delivery efficiency and reducing drug side effects. While various stimuli have been used to promote the drug delivery process, applying ultrasound (US) waves to control drug particles through the human body, noninvasively, has drawn the scientist's attention. However, microcarriers delivery reaches the aneurysmal artery by US waves that exert volumetric forces on blood, and drug carriers, which can therefore affect blood flow patterns and movement pathways of drug carriers, have not yet been studied. In this study, we developed a 3-D patient-specific model of abdominal aortic aneurysm (AAA) to evaluate the effect of US waves in enhancing the drug-containing microbubbles (MBs) adhered on the AAA lumen through ligand-receptor binding. Thus, a focused US (FUS) transducer with a resonance frequency of ~1.1 MHz was added to the geometry. Then, the surface density of MBs (SDM) adhered on the AAA lumen was calculated at peak acoustic pressure of ~1.1, ~2.2, and ~4.3 MPa. Results indicated that increasing the US pressure had a significant impact on improving the MBs adhered to the intended wall, whereby US waves with the maximum pressure of ~4.3 MPa could enhance ~1- [Formula: see text] MBs adhesion ~98% relative to not using the waves. While US waves have the advantage of more SDM adhered to the whole artery wall, they adversely affect the SDM adhered on the critical wall of the abdominal aorta. Furthermore, when the US strength goes up, a reduction occurs in the SDM adhered. This reduction is higher for smaller MBs, which is the mentioned MBs' size and US strength reduced SDM adhesion by about ~50% relative to systemic injection. Therefore, it can be concluded that drug delivery using the US field increases the SDM adhered to the whole AAA wall and decreases the SDM adhered to the critical wall of AAA.
Collapse
|
6
|
Sun L, Zhang J, Xu M, Zhang L, Tang Q, Chen J, Gong M, Sun S, Ge H, Wang S, Liang X, Cui L. Ultrasound Microbubbles Mediated Sonosensitizer and Antibody Co-delivery for Highly Efficient Synergistic Therapy on HER2-Positive Gastric Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:452-463. [PMID: 34961307 DOI: 10.1021/acsami.1c21924] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Trastuzumab combined with chemotherapy is the first-line treatment for advanced HER2-positive gastric cancer, but it still suffers from limited therapeutic efficiency and serious side effects, which are usually due to the poor delivery efficiency and the drug resistance of tumor cells to the chemotherapeutic drugs. Herein, a type of ultrasound microbubble for simultaneous delivery of sonosensitizers and therapeutic antibodies to achieve targeting combination of sonodynamic therapy and antibody therapy of HER2-positive gastric cancer was constructed from pyropheophorbide-lipid followed by trastuzumab conjugation (TP MBs). In vitro and in vivo studies showed that TP MBs had good biological safety, and their in vivo delivery can be monitored by ultrasound/fluorescence bimodal imaging. With ultrasound (US) located at the tumor area, TP MBs can be converted into nanoparticles (TP NPs) in situ by US-targeted microbubble destruction; plus the enhanced permeability and retention effects and the targeting effects of trastuzumab, the enrichment of sonosensitizers and antibodies in the tumor tissue can be greatly enhanced (∼2.1 times). When combined with ultrasound, TP MBs can not only increase the uptake of sonosensitizers in HER2-positive gastric cancer NCI-N87 cells but also efficiently generate singlet oxygen to greatly increase the killing effect on cells, obviously inhibiting the tumor growth in HER2-positive gastric cancer NCI-N87 cell models with a tumor inhibition rate up to 79.3%. Overall, TP MBs combined with US provided an efficient way for co-delivery of sonosensitizers and antibodies, greatly enhancing the synergistic therapeutic effect on HER2-positive gastric cancer while effectively reducing the side effects.
Collapse
Affiliation(s)
- Lihong Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Jinxia Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Menghong Xu
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Lulu Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Jing Chen
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Ming Gong
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Huiyu Ge
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
- Department of Ultrasound Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing100020, China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| | - Ligang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing100191, China
| |
Collapse
|
7
|
Khayamian MA, Parizi MS, Ghaderinia M, Abadijoo H, Vanaei S, Simaee H, Abdolhosseini S, Shalileh S, Faramarzpour M, Naeini VF, Hoseinpour P, Shojaeian F, Abbasvandi F, Abdolahad M. A label-free graphene-based impedimetric biosensor for real-time tracing of the cytokine storm in blood serum; suitable for screening COVID-19 patients. RSC Adv 2021; 11:34503-34515. [PMID: 35494759 PMCID: PMC9042719 DOI: 10.1039/d1ra04298j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/22/2021] [Indexed: 12/27/2022] Open
Abstract
Concurrent with the pandemic announcement of SARS-CoV-2 infection by the WHO, a variety of reports were published confirming the cytokine storm as the most mortal effect of the virus on the infected patients. Hence, cytokine storm as an evidenced consequence in most of the COVID-19 patients could offer a promising opportunity to use blood as a disease progression marker. Here, we have developed a rapid electrochemical impedance spectroscopy (EIS) sensor for quantifying the overall immune activity of the patients. Since during the cytokine storm many types of cytokines are elevated in the blood, there is no need for specific detection of a single type of cytokine and the collective behavior is just measured without any electrode functionalization. The sensor includes a monolayer graphene on a copper substrate as the working electrode (WE) which is able to distinguish between the early and severe stage of the infected patients. The charge transfer resistance (R CT) in the moderate and severe cases varies about 65% and 138% compared to the normal groups, respectively and a specificity of 77% and sensitivity of 100% based on ELISA results were achieved. The outcomes demonstrate a significant correlation between the total mass of the three main hypercytokinemia associated cytokines including IL-6, TNF-α and IFN-γ in patients and the R CT values. As an extra application, the biosensor's capability for diagnosis of COVID-19 patients was tested and a sensitivity of 92% and specificity of 50% were obtained compared to the RT-PCR results.
Collapse
Affiliation(s)
- Mohammad Ali Khayamian
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- School of Mechanical Engineering, College of Engineering, University of Tehran Tehran 11155-4563 Iran
| | - Mohammad Salemizadeh Parizi
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
| | - Mohammadreza Ghaderinia
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
| | - Hamed Abadijoo
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
| | - Shohreh Vanaei
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- School of Biology, College of Science, University of Tehran P. O. Box: 14155-6655 Tehran Iran
| | - Hossein Simaee
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR Tehran Iran
| | - Saeed Abdolhosseini
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
| | - Shahriar Shalileh
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
| | - Mahsa Faramarzpour
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
| | - Vahid Fadaei Naeini
- School of Mechanical Engineering, College of Engineering, University of Tehran Tehran 11155-4563 Iran
- Division of Machine Elements, Luleå University of Technology Luleå SE-97187 Sweden
| | | | - Fatemeh Shojaeian
- Imam Hossein Clinical Research Development Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Science Tehran Iran
| | - Fereshteh Abbasvandi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR P. O. Box 15179/64311 Tehran Iran
| | - Mohammad Abdolahad
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Cancer Institute, Imam-Khomeini Hospital, Tehran University of Medical Sciences P. O. Box 13145-158 Tehran Iran
- UT&TUMS Cancer electronic Research Center, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
8
|
Pourasad Y, Zarouri E, Salemizadeh Parizi M, Salih Mohammed A. Presentation of Novel Architecture for Diagnosis and Identifying Breast Cancer Location Based on Ultrasound Images Using Machine Learning. Diagnostics (Basel) 2021; 11:1870. [PMID: 34679568 PMCID: PMC8534593 DOI: 10.3390/diagnostics11101870] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the main causes of death among women worldwide. Early detection of this disease helps reduce the number of premature deaths. This research aims to design a method for identifying and diagnosing breast tumors based on ultrasound images. For this purpose, six techniques have been performed to detect and segment ultrasound images. Features of images are extracted using the fractal method. Moreover, k-nearest neighbor, support vector machine, decision tree, and Naïve Bayes classification techniques are used to classify images. Then, the convolutional neural network (CNN) architecture is designed to classify breast cancer based on ultrasound images directly. The presented model obtains the accuracy of the training set to 99.8%. Regarding the test results, this diagnosis validation is associated with 88.5% sensitivity. Based on the findings of this study, it can be concluded that the proposed high-potential CNN algorithm can be used to diagnose breast cancer from ultrasound images. The second presented CNN model can identify the original location of the tumor. The results show 92% of the images in the high-performance region with an AUC above 0.6. The proposed model can identify the tumor's location and volume by morphological operations as a post-processing algorithm. These findings can also be used to monitor patients and prevent the growth of the infected area.
Collapse
Affiliation(s)
- Yaghoub Pourasad
- Department of Electrical Engineering, Urmia University of Technology (UUT), Urmia 57166-93188, Iran
| | - Esmaeil Zarouri
- School of Electrical Engineering, Electronic Engineering, Iran University of Science and Technology—IUST, Tehran 16846-13114, Iran;
| | | | - Amin Salih Mohammed
- Department of Computer Engineering, College of Engineering and Computer Science, Lebanese French University, Erbil 44001, Iraq;
- Department of Software and Informatics Engineering, Salahaddin University, Erbil 44002, Iraq
| |
Collapse
|
9
|
EL MAGRI A, VANAEI S, SHIRINBAYAN M, Vaudreuil S, TCHARKHTCHI A. An Investigation to Study the Effect of Process Parameters on the Strength and Fatigue Behavior of 3D-Printed PLA-Graphene. Polymers (Basel) 2021; 13:3218. [PMID: 34641034 PMCID: PMC8512064 DOI: 10.3390/polym13193218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 01/13/2023] Open
Abstract
3D printing, an additive manufacturing process, draws particular attention due to its ability to produce components directly from a 3D model; however, the mechanical properties of the produced pieces are limited. In this paper, we present, from the experimental aspect, the fatigue behavior and damage analysis of polylactic acid (PLA)-Graphene manufactured using 3D printing. The main purpose of this paper is to analyze the combined effect of process parameters, loading amplitude, and frequency on fatigue behavior of the 3D-printed PLA-Graphene specimens. Firstly, a specific case study (single printed filament) was analyzed and compared with spool material for understanding the nature of 3D printing of the material. Specific experiments of quasi-static tensile tests are performed. A strong variation of fatigue strength as a function of the loading amplitude, frequency, and process parameters is also presented. The obtained experimental results highlight that fatigue lifetime clearly depends on the process parameters as well as the loading amplitude and frequency. Moreover, when the frequency is 80 Hz, the coupling effect of thermal and mechanical fatigue causes self-heating, which decreases the fatigue lifetime. This paper comprises useful data regarding the mechanical behavior and fatigue lifetime of 3D-printed PLA-Graphene specimens. In fact, it evaluates the effect of process parameters based on the nature of this process, which is classified as a thermally-driven process.
Collapse
Affiliation(s)
- Anouar EL MAGRI
- Euromed Polytechnic School, Euromed Research Center, Euromed University of Fes, Route de Meknès (Rond point Bensouda), Fès 30 000, Morocco;
| | | | - Mohammadali SHIRINBAYAN
- Arts et Metiers Institute of Technology, CNRS, CNAM, PIMM, HESAM University, 75013 Paris, France; (M.S.); (A.T.)
| | - Sébastien Vaudreuil
- Euromed Polytechnic School, Euromed Research Center, Euromed University of Fes, Route de Meknès (Rond point Bensouda), Fès 30 000, Morocco;
| | - Abbas TCHARKHTCHI
- Arts et Metiers Institute of Technology, CNRS, CNAM, PIMM, HESAM University, 75013 Paris, France; (M.S.); (A.T.)
| |
Collapse
|
10
|
Vanaei S, Parizi MS, Abdolhosseini S, Katouzian I. Spectroscopic, molecular docking and molecular dynamic simulation studies on the complexes of β-lactoglobulin, safranal and oleuropein. Int J Biol Macromol 2020; 165:2326-2337. [PMID: 33132125 DOI: 10.1016/j.ijbiomac.2020.10.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Herbal bioactive compounds have captured pronounced attention considering their health-promoting effects as well as their functional properties. In this study, the binding mechanism between milk protein bovine β-lactoglobulin (β-LG), oleuropein (OLE) and safranal (SAF) found in olive leaf extract and saffron, respectively via spectroscopic and in silico studies. Fluorescence quenching information exhibited that interactions with both ligands were spontaneous and hydrophobic interactions were dominant. Also, the CD spectroscopy results demonstrated the increase in β-sheet structure and decrease in the α-helix content for both ligands. Size of β-LG-OLE complex was higher than β-LG-SAF due to the conformation and larger molecular size. Molecular docking and simulation studies revealed that SAF and OLE bind in the central calyx of β-LG and the surface of β-LG next to hydrophobic residues. Lastly, OLE formed a more stabilized complex compared to SAF based on the molecular dynamic simulation results.
Collapse
Affiliation(s)
- Shohreh Vanaei
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, P.O. Box 14395/515, Iran
| | - Mohammad Salemizadeh Parizi
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, P.O. Box 14395/515, Iran
| | - Saeed Abdolhosseini
- Nano Bioelectronics Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, P.O. Box 14395/515, Iran
| | - Iman Katouzian
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Nano-encapsulation in the Food, Nutraceutical, and Pharmaceutical Industries Group (NFNPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|