1
|
Pan T, Huang Y, Wei J, Lai C, Chen Y, Nan K, Wu W. Implantation of biomimetic polydopamine nanocomposite scaffold promotes optic nerve regeneration through modulating inhibitory microenvironment. J Nanobiotechnology 2024; 22:683. [PMID: 39506841 PMCID: PMC11542345 DOI: 10.1186/s12951-024-02962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Optic nerve regeneration remains challenging worldwide due to the limited intrinsic regenerative capacity of retinal ganglion cells (RGCs) and the inhibitory microenvironment. Oxidative stress, induced by excessive reactive oxygen species (ROS) following optic nerve injury, is associated with prolonged neuroinflammation, resulting in a secondary injury of RGCs and the impairment of axon regeneration. Herein, we developed a bionic nanocomposite scaffold (GA@PDA) with immunoregulatory ability for enhanced optic nerve regeneration. The ice-templating method was employed to fabricate biopolymer-based scaffolds with a directional porous structure, mimicking the optic nerve, which effectively guided the oriented growth of neuronal cells. The incorporation of bioinspired polydopamine nanoparticles (PDA NPs) further confers excellent ROS scavenging ability, thereby modulating the phenotype transformation of microglia/macrophages from pro-inflammatory M1 to anti-inflammatory M2. In a rat optic nerve crush model, the implantation of GA@PDA scaffold enhanced survival of RGCs and promoted axonal regeneration. Our study offers novel insights and holds promising potential for the advancement of engineered biomaterials in facilitating optic nerve regeneration.
Collapse
Affiliation(s)
- Tonghe Pan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yate Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jinfei Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Chen Lai
- Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, PKU-HKUST ShenZhen- HongKong Institution, Shenzhen, 518057, Guangdong, China
| | - Yangjun Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Kaihui Nan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
2
|
Millesi E, Millesi F, Rechberger JS, Daniels DJ, Radtke C, Mardini S. Localized tacrolimus therapy: innovations in peripheral nerve regeneration through advanced drug delivery systems. Ther Deliv 2024; 15:743-748. [PMID: 39229814 PMCID: PMC11457664 DOI: 10.1080/20415990.2024.2392481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Affiliation(s)
- Elena Millesi
- Division of Plastic and Reconstructive Surgery, Mayo Clinic, Rochester, MN55905, USA
- Division of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Flavia Millesi
- Division of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | | | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN55905,USA
| | - Christine Radtke
- Division of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Samir Mardini
- Division of Plastic and Reconstructive Surgery, Mayo Clinic, Rochester, MN55905, USA
| |
Collapse
|
3
|
Krawczyk A, Stadler SM, Strzalka-Mrozik B. Nanomedicines for Dry Eye Syndrome: Targeting Oxidative Stress with Modern Nanomaterial Strategies. Molecules 2024; 29:3732. [PMID: 39202812 PMCID: PMC11357096 DOI: 10.3390/molecules29163732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Dry eye syndrome (DES) is a dynamic, chronic disease of the ocular surface and ocular appendages caused by inflammation. The most common symptoms include redness, itching, and blurred vision, resulting from dysfunction of the meibomian glands and impaired tear-film production. Factors contributing to the development of DES include environmental elements, such as UV radiation, and internal elements, such as hormonal imbalances. These factors increase oxidative stress, which exacerbates inflammation on the surface of the eye and accelerates the development of DES. In recent years, the incidence of DES has risen, leading to a greater need to develop effective treatments. Current treatments for dry eye are limited and primarily focus on alleviating individual symptoms, such as reducing inflammation of the ocular surface. However, it is crucial to understand the pathomechanism of the disease and tailor treatment to address the underlying causes to achieve the best possible therapeutic outcomes. Therefore, in this review, we analyzed the impact of oxidative stress on the development of DES to gain a better understanding of its pathomechanism and examined recently developed nanosystems that allow drugs to be delivered directly to the disease site.
Collapse
Affiliation(s)
| | | | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (A.K.); (S.M.S.)
| |
Collapse
|
4
|
Zheng Q, Ge C, Li K, Wang L, Xia X, Liu X, Mehmood R, Shen J, Nan K, Chen W, Lin S. Remote-controlled dexamethasone-duration on eye-surface with a micelle-magnetic nanoparticulate co-delivery system for dry eye disease. Acta Pharm Sin B 2024; 14:3730-3745. [PMID: 39220865 PMCID: PMC11365393 DOI: 10.1016/j.apsb.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 09/04/2024] Open
Abstract
Dexamethasone (DEX) is used to treat ocular surface diseases. However, regulating DEX duration in tears while preventing its absorption into the anterior chamber is critical for balancing its therapy effects and the side effects. In this study, a novel magnetic nanoparticle (MNP)-micelle (MC) co-delivery system (MMDS) was developed. The MC moiety in the MMDS served as the carrier for DEX and the MNP part endowed the MMDS with magnetic-responsive properties. To extend its residency, the MMDS was magnetically attracted by an external magnet after instilling, which acted as a precorneal drug-depot enabling a sustainable release of DEX in tears. With combination of magnet treatment, the topical instillation of MMDS@DEX significantly prolonged the DEX-retention in tears and increased the DEX-concentration in the cornea and conjunctiva, as well as concurrently reduced the DEX-level in the aqueous humor, when compared with the commercial DEX eye drop treatment. The combination of MMDS@DEX and magnet treatment exerted significantly better therapeutic effects against DED with smaller side effects than conventional treatments including DEX suspension, commercial DEX eye drops, as well as the MMDS@DEX treatment alone. The present work provided a new method for the effective delivery of DEX to ocular surface tissues while reducing its side effects, which will be beneficial to the treatments of a wide range of ocular surface diseases.
Collapse
Affiliation(s)
- Qinxiang Zheng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Chaoxiang Ge
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Kexin Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Longxin Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoyu Xia
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiao Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Rashid Mehmood
- School of Chemical Engineering, UNSW Sydney, High Street, Building E10, Kensington, NSW 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Corner Botany & High Streets, Kensington, NSW 2052, Australia
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Kaihui Nan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Sen Lin
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
5
|
Ranch K, Chawnani D, Jani H, Acharya D, Patel CA, Jacob S, Babu RJ, Tiwari AK, Al-Tabakha MM, Boddu SHS. An update on the latest strategies in retinal drug delivery. Expert Opin Drug Deliv 2024; 21:695-712. [PMID: 38787783 DOI: 10.1080/17425247.2024.2358886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION Retinal drug delivery has witnessed significant advancements in recent years, mainly driven by the prevalence of retinal diseases and the need for more efficient and patient-friendly treatment strategies. AREAS COVERED Advancements in nanotechnology have introduced novel drug delivery platforms to improve bioavailability and provide controlled/targeted delivery to specific retinal layers. This review highlights various treatment options for retinal diseases. Additionally, diverse strategies aimed at enhancing delivery of small molecules and antibodies to the posterior segment such as implants, polymeric nanoparticles, liposomes, niosomes, microneedles, iontophoresis and mixed micelles were emphasized. A comprehensive overview of the special technologies currently under clinical trials or already in the clinic was provided. EXPERT OPINION Ideally, drug delivery system for treating retinal diseases should be less invasive in nature and exhibit sustained release up to several months. Though topical administration in the form of eye drops offers better patient compliance, its clinical utility is limited by nature of the drug. There is a wide range of delivery platforms available, however, it is not easy to modify any single platform to accommodate all types of drugs. Coordinated efforts between ophthalmologists and drug delivery scientists are necessary while developing therapeutic compounds, right from their inception.
Collapse
Affiliation(s)
- Ketan Ranch
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
| | - Disha Chawnani
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
| | - Harshilkumar Jani
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
| | - Devarshi Acharya
- Department of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, India
| | - Chirag Amrutlal Patel
- Department of Pharmacology & Pharmacy practices, L. M. College of Pharmacy, Ahmedabad, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates UAE
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, USA
| | - Amit K Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Moawia M Al-Tabakha
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Sai H S Boddu
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| |
Collapse
|
6
|
El-Husseiny HM, Mady EA, Doghish AS, Zewail MB, Abdelfatah AM, Noshy M, Mohammed OA, El-Dakroury WA. Smart/stimuli-responsive chitosan/gelatin and other polymeric macromolecules natural hydrogels vs. synthetic hydrogels systems for brain tissue engineering: A state-of-the-art review. Int J Biol Macromol 2024; 260:129323. [PMID: 38242393 DOI: 10.1016/j.ijbiomac.2024.129323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Currently, there are no viable curative treatments that can enhance the central nervous system's (CNS) recovery from trauma or illness. Bioengineered injectable smart/stimuli-responsive hydrogels (SSRHs) that mirror the intricacy of the CNS milieu and architecture have been suggested as a way to get around these restrictions in combination with medication and cell therapy. Additionally, the right biophysical and pharmacological stimuli are required to boost meaningful CNS regeneration. Recent research has focused heavily on developing SSRHs as cutting-edge delivery systems that can direct the regeneration of brain tissue. In the present article, we have discussed the pathology of brain injuries, and the applicable strategies employed to regenerate the brain tissues. Moreover, the most promising SSRHs for neural tissue engineering (TE) including alginate (Alg.), hyaluronic acid (HA), chitosan (CH), gelatin, and collagen are used in natural polymer-based hydrogels and thoroughly discussed in this review. The ability of these hydrogels to distribute bioactive substances or cells in response to internal and external stimuli is highlighted with particular attention. In addition, this article provides a summary of the most cutting-edge techniques for CNS recovery employing SSRHs for several neurodegenerative diseases.
Collapse
Affiliation(s)
- Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amr M Abdelfatah
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Ras Sudr 46612, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| |
Collapse
|
7
|
Wu J, Huang Y, Yu H, Li K, Zhang S, Qiao G, Liu X, Duan H, Huang Y, So KF, Yang Z, Li X, Wang L. Chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor for neurotrophic keratopathy. Neural Regen Res 2024; 19:680-686. [PMID: 37721301 PMCID: PMC10581555 DOI: 10.4103/1673-5374.380908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 09/19/2023] Open
Abstract
Neurotrophic keratopathy is a persistent defect of the corneal epithelium, with or without stromal ulceration, due to corneal nerve deficiency caused by a variety of etiologies. The treatment options for neurotrophic keratopathy are limited. In this study, an ophthalmic solution was constructed from a chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor (CTH-mNGF). Its effectiveness was evaluated in corneal denervation (CD) mice and patients with neurotrophic keratopathy. In the preclinical setting, CTH-mNGF was assessed in a murine corneal denervation model. CTH-mNGF was transparent, thermosensitive, and ensured sustained release of mNGF for over 20 hours on the ocular surface, maintaining the local mNGF concentration around 1300 pg/mL in vivo. Corneal denervation mice treated with CTH-mNGF for 10 days showed a significant increase in corneal nerve area and total corneal nerve length compared with non-treated and CTH treated mice. A subsequent clinical trial of CTH-mNGF was conducted in patients with stage 2 or 3 neurotrophic keratopathy. Patients received topical CTH-mNGF twice daily for 8 weeks. Fluorescein sodium images, Schirmer's test, intraocular pressure, Cochet-Bonnet corneal perception test, and best corrected visual acuity were evaluated. In total, six patients (total of seven eyes) diagnosed with neurotrophic keratopathy were enrolled. After 8 weeks of CTH-mNGF treatment, all participants showed a decreased area of corneal epithelial defect, as stained by fluorescence. Overall, six out of seven eyes had fluorescence staining scores < 5. Moreover, best corrected visual acuity, intraocular pressure, Schirmer's test and Cochet-Bonnet corneal perception test results showed no significant improvement. An increase in corneal nerve density was observed by in vivo confocal microscopy after 8 weeks of CTH-mNGF treatment in three out of seven eyes. This study demonstrates that CTH-mNGF is transparent, thermosensitive, and has sustained-release properties. Its effectiveness in healing corneal epithelial defects in all eyes with neurotrophic keratopathy suggests CTH-mNGF has promising application prospects in the treatment of neurotrophic keratopathy, being convenient and cost effective.
Collapse
Affiliation(s)
- Jie Wu
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
- The PLA Medical College, Department of Nephrology, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- Department of Ophthalmology, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, China
| | - Yulei Huang
- Medical School of Chinese PLA, Beijing, China
| | - Hanrui Yu
- Medical School of Chinese PLA, Beijing, China
| | - Kaixiu Li
- Medical School of Chinese PLA, Beijing, China
| | | | | | - Xiao Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- School of Engineering Medicine, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beihang University, Beijing, China
- Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
- The PLA Medical College, Department of Nephrology, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| |
Collapse
|
8
|
Cai R, Zhang L, Chi H. Recent development of polymer nanomicelles in the treatment of eye diseases. Front Bioeng Biotechnol 2023; 11:1246974. [PMID: 37600322 PMCID: PMC10436511 DOI: 10.3389/fbioe.2023.1246974] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
The eye, being one of the most intricate organs in the human body, hosts numerous anatomical barriers and clearance mechanisms. This highlights the importance of devising a secure and efficacious ocular medication delivery system. Over the past several decades, advancements have been made in the development of a nano-delivery platform based on polymeric micelles. These advancements encompass diverse innovations such as poloxamer, chitosan, hydrogel-encapsulated micelles, and contact lenses embedded with micelles. Such technological evolutions allow for sustained medication retention and facilitate enhanced permeation within the eye, thereby standing as the avant-garde in ocular medication technology. This review provides a comprehensive consolidation of ocular medications predicated on polymer nanomicelles from 2014 to 2023. Additionally, it explores the challenges they pose in clinical applications, a discussion intended to aid the design of future clinical research concerning ocular medication delivery formulations.
Collapse
Affiliation(s)
- Ruijun Cai
- Department of Pharmacy, The People’s Hospital of Jiuquan, Jiuquan, Gansu, China
| | - Ling Zhang
- Department of Pharmacy, The People’s Hospital of Jiuquan, Jiuquan, Gansu, China
| | - Hao Chi
- Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
9
|
Wang D, Huang B, Zhu C, Wang L, Jin J, Tan J, Li Q, Xiang S, Nan K, Lin S. Efficiency Encapsulation of FK506 with New Dual Self-Assembly Multi-Hydrophobic-Core Nanoparticles for Preventing Keratoplasty Rejection. Adv Healthc Mater 2023; 12:e2203242. [PMID: 37171892 DOI: 10.1002/adhm.202203242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/29/2023] [Indexed: 05/14/2023]
Abstract
Nanoparticles self-assembled by amphiphilic copolymers for loading hydrophobic molecules are intensively investigated. However, their hydrophobic molecule-loading capacity is low due to the limitation of hydrophobic groups in these copolymers. In this regard, new lysine oligomer-based multi-hydrophobic side chain polymers (MHCPs) are synthesized by polymerization of γ-benzyl-l glutamate N-carboxy anhydride initiated by side-chain primary amino groups in lysine oligomer. Each hydrophobic side chain in MHCPs can be self-assembled by hydrophobic interaction to form multi-hydrophobic-core nanoparticles (MHC-NPs) with silkworm cocoon-, grape cluster-, and butterfly-like shapes (depending on hydrophobic-side-chains lengths). To increase their stability, MHC-NPs are dually self-assembled with polyethylene glycol-polyglutamic acid through charge interaction. Each hydrophobic core in MHC-NPs serves as a carrier for hydrophobic molecules, endowing their nanostructure with high loading capacity. MHC-NPs are employed to load tacrolimus (also known as FK506), and the loading amount is 18% and the loading efficiency is 80%, which are higher than those of previously reported nanomicelles self-assembled by linear amphiphilic copolymers. Topical administration of FK506-loaded nanoparticle (FK506-NP) can significantly prolong retention of FK506 on the eye surface. FK506-NP exhibits higher in vivo immunosuppressive effects than free FK506 and commercial FK506 eye drop, as well as a better protective effect against immunotoxicity in the corneal grafts after keratoplasty.
Collapse
Affiliation(s)
- Dongmei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Baoshan Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chenchen Zhu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lei Wang
- Engineering Research Center of Clinical Functional Materials and Diagnosis and Treatment Devices of Zhejiang Province, Wenzhou Institute, UCAS, Wenzhou, Zhejiang, 325000, China
| | - Jiahui Jin
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jingyang Tan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qing Li
- Engineering Research Center of Clinical Functional Materials and Diagnosis and Treatment Devices of Zhejiang Province, Wenzhou Institute, UCAS, Wenzhou, Zhejiang, 325000, China
| | - Shengjin Xiang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Kaihui Nan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
| | - Sen Lin
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis and Treatment Devices of Zhejiang Province, Wenzhou Institute, UCAS, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
10
|
Mahaling B, Low SWY, Ch S, Addi UR, Ahmad B, Connor TB, Mohan RR, Biswas S, Chaurasia SS. Next-Generation Nanomedicine Approaches for the Management of Retinal Diseases. Pharmaceutics 2023; 15:2005. [PMID: 37514191 PMCID: PMC10383092 DOI: 10.3390/pharmaceutics15072005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Retinal diseases are one of the leading causes of blindness globally. The mainstay treatments for these blinding diseases are laser photocoagulation, vitrectomy, and repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) or steroids. Unfortunately, these therapies are associated with ocular complications like inflammation, elevated intraocular pressure, retinal detachment, endophthalmitis, and vitreous hemorrhage. Recent advances in nanomedicine seek to curtail these limitations, overcoming ocular barriers by developing non-invasive or minimally invasive delivery modalities. These modalities include delivering therapeutics to specific cellular targets in the retina, providing sustained delivery of drugs to avoid repeated intravitreal injections, and acting as a scaffold for neural tissue regeneration. These next-generation nanomedicine approaches could potentially revolutionize the treatment landscape of retinal diseases. This review describes the availability and limitations of current treatment strategies and highlights insights into the advancement of future approaches using next-generation nanomedicines to manage retinal diseases.
Collapse
Affiliation(s)
- Binapani Mahaling
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shermaine W Y Low
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad 500078, India
| | - Utkarsh R Addi
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baseer Ahmad
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Thomas B Connor
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rajiv R Mohan
- One-Health One-Medicine Ophthalmology and Vision Research Program, University of Missouri, Columbia, MO 65211, USA
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad 500078, India
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
11
|
Wu KY, Tan K, Akbar D, Choulakian MY, Tran SD. A New Era in Ocular Therapeutics: Advanced Drug Delivery Systems for Uveitis and Neuro-Ophthalmologic Conditions. Pharmaceutics 2023; 15:1952. [PMID: 37514137 PMCID: PMC10385446 DOI: 10.3390/pharmaceutics15071952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The eye's intricate anatomical barriers pose significant challenges to the penetration, residence time, and bioavailability of topically applied medications, particularly in managing uveitis and neuro-ophthalmologic conditions. Addressing this issue, polymeric nano-based drug delivery systems (DDS) have surfaced as a promising solution. These systems enhance drug bioavailability in hard-to-reach target tissues, extend residence time within ocular tissues, and utilize biodegradable and nanosized polymers to reduce undesirable side effects. Thus, they have stimulated substantial interest in crafting innovative treatments for uveitis and neuro-ophthalmologic diseases. This review provides a comprehensive exploration of polymeric nano-based DDS used for managing these conditions. We discuss the present therapeutic hurdles posed by these diseases and explore the potential role of various biopolymers in broadening our treatment repertoire. Our study incorporates a detailed literature review of preclinical and clinical studies from 2017 to 2023. Owing to advancements in polymer science, ocular DDS has made rapid strides, showing tremendous potential to revolutionize the treatment of patients with uveitis and neuro-ophthalmologic disorders.
Collapse
Affiliation(s)
- Kevin Y Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Kenneth Tan
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3T 1J4, Canada
| | - Dania Akbar
- Department of Human Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Mazen Y Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
12
|
Luo J, Zhao X, Guo B, Han Y. Preparation, thermal response mechanisms and biomedical applications of thermosensitive hydrogels for drug delivery. Expert Opin Drug Deliv 2023; 20:641-672. [PMID: 37218585 DOI: 10.1080/17425247.2023.2217377] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Drug treatment is one of the main ways of coping with disease today. For the disadvantages of drug management, thermosensitive hydrogel is used as a countermeasure, which can realize the simple sustained release of drugs and the controlled release of drugs in complex physiological environments. AREAS COVERED This paper talks about thermosensitive hydrogels that can be used as drug carriers. The common preparation materials, material forms, thermal response mechanisms, characteristics of thermosensitive hydrogels for drug release and main disease treatment applications are reviewed. EXPERT OPINION When thermosensitive hydrogels are used as drug loading and delivery platforms, desired drug release patterns and release profiles can be tailored by selecting raw materials, thermal response mechanisms, and material forms. The properties of hydrogels prepared from synthetic polymers will be more stable than natural polymers. Integrating multiple thermosensitive mechanisms or different kinds of thermosensitive mechanisms on the same hydrogel is expected to realize the spatiotemporal differential delivery of multiple drugs under temperature stimulation. The industrial transformation of thermosensitive hydrogels as drug delivery platforms needs to meet some important conditions.
Collapse
Affiliation(s)
- Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Laspro M, Chaya BF, Brydges HT, Dave N, Thys E, Onuh OC, Tran D, Kimberly LL, Ceradini DJ, Rodriguez ED. Technical Feasibility of Whole-eye Vascular Composite Allotransplantation: A Systematic Review. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e4946. [PMID: 37113307 PMCID: PMC10129168 DOI: 10.1097/gox.0000000000004946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/22/2023] [Indexed: 04/29/2023]
Abstract
There are over 43 million individuals in the world who are blind. As retinal ganglion cells are incapable of regeneration, treatment modalities for this condition are limited. Since first incepted in 1885, whole-eye transplantation (WET) has been proposed as the ultimate cure for blindness. As the field evolves, different aspects of the surgery have been individually explored, including allograft viability, retinal survival, and optic nerve regeneration. Due to the paucity in the WET literature, we aimed to systematically review proposed WET surgical techniques to assess surgical feasibility. Additionally, we hope to identify barriers to future clinical application and potential ethical concerns that could be raised with surgery. Methods We conducted a systematic review of PubMed, Embase, Cochrane Library, and Scopus from inception to June 10, 2022, to identify articles pertaining to WET. Data collection included model organisms studied, surgical techniques utilized, and postoperative functional outcomes. Results Our results yielded 33 articles, including 14 mammalian and 19 cold-blooded models. In studies performing microvascular anastomosis in mammals, 96% of allografts survived after surgery. With nervous coaptation, 82.9% of retinas had positive electroretinogram signals after surgery, indicating functional retinal cells after transplantation. Results on optic nerve function were inconclusive. Ocular-motor functionality was rarely addressed. Conclusions Regarding allograft survival, WET appears feasible with no complications to the recipient recorded in previous literature. Functional restoration is potentially achievable with a demonstrated positive retinal survival in live models. Nevertheless, the potential of optic nerve regeneration remains undetermined.
Collapse
Affiliation(s)
- Matteo Laspro
- From the Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, N.Y
| | - Bachar F. Chaya
- From the Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, N.Y
| | - Hilliard T. Brydges
- From the Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, N.Y
| | - Nikhil Dave
- From the Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, N.Y
| | - Erika Thys
- From the Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, N.Y
| | - Ogechukwu C. Onuh
- From the Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, N.Y
| | - David Tran
- From the Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, N.Y
| | - Laura L. Kimberly
- From the Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, N.Y
- Department of Population Health, NYU Grossman School of Medicine, New York, N.Y
| | - Daniel J. Ceradini
- From the Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, N.Y
| | - Eduardo D. Rodriguez
- From the Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, N.Y
| |
Collapse
|
14
|
Fang L, Liu J, Liu Z, Zhou H. Immune modulating nanoparticles for the treatment of ocular diseases. J Nanobiotechnology 2022; 20:496. [DOI: 10.1186/s12951-022-01658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractOcular diseases are increasingly influencing people’s quality of life. Complicated inflammatory mechanisms involved in the pathogenic process of ocular diseases make inflammation-targeting treatment a potential therapeutic approach. The limited efficacy of conventional anti-inflammatory therapeutic strategies, caused by various objective factors, such as complex ocular biological barriers, and subjective factors, such as poor compliance, are promoting the development of new therapeutic methods. With the advantages of considerable tissue permeability, a controllable drug release rate, and selective tissue targeting ability, nanoparticles have successfully captured researchers’ attention and have become a research hotspot in treating ocular diseases. This review will focus on the advantages of nanosystems over traditional therapy, the anti-inflammation mechanisms of nanoparticles, and the anti-inflammatory applications of nanoparticles in different ocular diseases (ocular surface diseases, vitreoretinopathy, uveal diseases, glaucoma, and visual pathway diseases). Furthermore, by analyzing the current situation of nanotherapy and the challenges encountered, we hope to inspire new ideas and incentives for designing nanoparticles more consistent with human physiological characteristics to make progress based on conventional treatments. Overall, some progress has been made in nanoparticles for the treatment of ocular diseases, and nanoparticles have rather broad future clinical translation prospects.
Collapse
|
15
|
Shityakov S, Nagai M, Ergün S, Braunger BM, Förster CY. The Protective Effects of Neurotrophins and MicroRNA in Diabetic Retinopathy, Nephropathy and Heart Failure via Regulating Endothelial Function. Biomolecules 2022; 12:biom12081113. [PMID: 36009007 PMCID: PMC9405668 DOI: 10.3390/biom12081113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a common disease affecting more than 537 million adults worldwide. The microvascular complications that occur during the course of the disease are widespread and affect a variety of organ systems in the body. Diabetic retinopathy is one of the most common long-term complications, which include, amongst others, endothelial dysfunction, and thus, alterations in the blood-retinal barrier (BRB). This particularly restrictive physiological barrier is important for maintaining the neuroretina as a privileged site in the body by controlling the inflow and outflow of fluid, nutrients, metabolic end products, ions, and proteins. In addition, people with diabetic retinopathy (DR) have been shown to be at increased risk for systemic vascular complications, including subclinical and clinical stroke, coronary heart disease, heart failure, and nephropathy. DR is, therefore, considered an independent predictor of heart failure. In the present review, the effects of diabetes on the retina, heart, and kidneys are described. In addition, a putative common microRNA signature in diabetic retinopathy, nephropathy, and heart failure is discussed, which may be used in the future as a biomarker to better monitor disease progression. Finally, the use of miRNA, targeted neurotrophin delivery, and nanoparticles as novel therapeutic strategies is highlighted.
Collapse
Affiliation(s)
- Sergey Shityakov
- Division of Chemoinformatics, Infochemistry Scientific Center, Lomonosova Street 9, 191002 Saint-Petersburg, Russia
| | - Michiaki Nagai
- Department of Cardiology, Hiroshima City Asa Hospital, 2-1-1 Kabeminami, Aaskita-ku, Hiroshima 731-0293, Japan
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
| | - Barbara M. Braunger
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
- Correspondence: (B.M.B.); (C.Y.F.)
| | - Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Würzburg University, 97080 Würzburg, Germany
- Correspondence: (B.M.B.); (C.Y.F.)
| |
Collapse
|
16
|
Lin S, Gao W, Zhu C, Lou Q, Ye C, Ren Y, Mehmood R, Huang B, Nan K. Efficiently suppress of ferroptosis using deferoxamine nanoparticles as a new method for retinal ganglion cell protection after traumatic optic neuropathy. BIOMATERIALS ADVANCES 2022; 138:212936. [PMID: 35913229 DOI: 10.1016/j.bioadv.2022.212936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/30/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Traumatic optic neuropathy (TON) is the major contributor to optic nerve damage, where the retinal ganglion cells (RGCs) are substantially lost. However, the underlying pathological mechanisms for these conditions remain largely elusive. Present work conducted a study on TON rat model, where the iron-dependent cyclooxygenase-2 (COX-2) overexpression and lipid peroxidation were observed in RGCs, suggesting ferroptosis, an iron-dependent non-apoptotic cell death, is involved in TON-induced death of RGCs. Hence, the newly formulated hyaluronic acid (HA)-based deferoxamine (DFO) nanoparticles (DFO-NPs) were intravitreally administrated in the rat model. It was hypothesized that the effective delivery of DFO, iron chelator, to the RGCs might rescue RGC ferroptosis from TON-induced injury. Also, since DFO is poor in bioavailability and of very short half-life in vivo, its safe and efficient intravitreal delivery is critical. Therefore, DFO-NPs were prepared by chemical grafting DFO onto HA molecules, and then crosslinking them in microemulsion bubbles for nanoparticles formulation. The nanoparticles were highly accumulated around the ganglionic cells and DFO uptake was increased in RGCs, accompanied by the significantly inhibited the overexpression of COX-2 and inactivation of glutathione peroxidase 4 (GPX4). These results indicate that DFO-NPs acted as an effective ferroptosis inhibitor, for the prevention of TON-induced RGC death. The current study provides new insights into the underlying mechanism of TON-induced RGC death, which may help to explore a novel strategy for the treatment of TON.
Collapse
Affiliation(s)
- Sen Lin
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; School of Biomedical and Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| | - Wa Gao
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Tianjin Medical University Eye Hospital and Institute, Tianjin 300384, PR China
| | - Chenchen Zhu
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qi Lou
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Cong Ye
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; School of Biomedical and Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Yueping Ren
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Rashid Mehmood
- School of Materials Science and Engineering, UNSW Sydney, High Street, Building E10, Kensington, NSW 2052, Australia; Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Corner Botany & High Streets, Kensington, NSW 2052, Australia
| | - Baoshan Huang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; School of Biomedical and Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| | - Kaihui Nan
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; School of Biomedical and Engineering, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
17
|
Xie D, Hu J, Wu T, Cao K, Luo X. Potential Biomarkers and Drugs for Nanoparticle-Induced Cytotoxicity in the Retina: Based on Regulation of Inflammatory and Apoptotic Genes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095664. [PMID: 35565057 PMCID: PMC9099825 DOI: 10.3390/ijerph19095664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023]
Abstract
The eye is a superficial organ directly exposed to the surrounding environment. Thus, the toxicity of nanoparticle (NP) pollutants to the eye may be potentially severer relative to inner organs and needs to be monitored. However, the cytotoxic mechanisms of NPs on the eyes remain rarely reported. This study was to screen crucial genes associated with NPs-induced retinal injuries. The gene expression profiles in the retina induced by NPs [GSE49371: Au20, Au100, Si20, Si100; GSE49048: presumptive therapeutic concentration (PTC) TiO2, 10PTC TiO2] and commonly used retinal cell injury models (optic nerve injury procedure: GSE55228, GSE120257 and GSE131486; hypoxia exposure: GSE173233, GSE151610, GSE135844; H2O2 exposure: GSE122270) were obtained from the Gene Expression Omnibus database. A total of 381 differentially expressed genes (including 372 mRNAs and 9 lncRNAs) were shared between NP exposure and the optic nerve injury model when they were compared with their corresponding controls. Function enrichment analysis of these overlapped genes showed that Tlr2, Crhbp, Ccl2, Cxcl10, Fas, Irf8, Socs3, Stat3, Gbp6, Casp1 and Syk were involved in inflammatory- and apoptotic-related processes. Protein-protein interaction network analysis revealed eight of them (Tlr2, Ccl2, Cxcl10, Irf8, Socs3, Stat3, Casp1 and Syk) were hub genes. Moreover, Socs3 could interact with upstream Stat3 and downstream Fas/Casp1/Ccl2/Cxcl10; Irf8 could interact with upstream Tlr2, Syk and downstream Cxcl10. Competing endogenous RNAs network analysis identified Socs3, Irf8, Gdf6 and Crhbp could be regulated by lncRNAs and miRNAs (9330175E14Rik-mmu-miR-762-Socs3, 6430562O15Rik-mmu-miR-207-Irf8, Gm9866-mmu-miR-669b-5p-Gdf6, 4933406C10Rik-mmu-miR-9-5p-Crhbp). CMap-CTD database analyses indicated the expression levels of Tlr2, Ccl2, Cxcl10, Fas, Irf8, Socs3, Stat3, Gbp6, Casp1 and Syk could be reversed by folic acid. Crhbp and Gdf6 were also verified to be downregulated, while Tlr2, Ccl2, Irf8, Socs3 and Stat3 were upregulated in hypoxia/H2O2-induced retinal injury models. Hereby, our findings suggest that Crhbp, Irf8, Socs3 and Gdf6 as well as their upstream mRNAs, lncRNAs and miRNAs may be potential monitoring biomarkers and therapeutic targets for NP-induced retinal injuries. Folic acid supplementation may be a preventive and therapeutic approach.
Collapse
Affiliation(s)
- Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (D.X.); (J.H.)
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (D.X.); (J.H.)
| | - Tong Wu
- Shanghai Jing Rui Yang Industrial Co., Ltd., 3188 Xiupu Road, Pudong New Area, Shanghai 200122, China;
| | - Kangli Cao
- Shanghai Institute of Spacecraft Equipment, 251 Huaning Road, Shanghai 200240, China;
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China; (D.X.); (J.H.)
- Correspondence: ; Tel.: +86-0512-67162531
| |
Collapse
|
18
|
Ma X, Wang M, Ran Y, Wu Y, Wang J, Gao F, Liu Z, Xi J, Ye L, Feng Z. Design and Fabrication of Polymeric Hydrogel Carrier for Nerve Repair. Polymers (Basel) 2022; 14:polym14081549. [PMID: 35458307 PMCID: PMC9031091 DOI: 10.3390/polym14081549] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023] Open
Abstract
Nerve regeneration and repair still remain a huge challenge for both central nervous and peripheral nervous system. Although some therapeutic substances, including neuroprotective agents, clinical drugs and stem cells, as well as various growth factors, are found to be effective to promote nerve repair, a carrier system that possesses a sustainable release behavior, in order to ensure high on-site concentration during the whole repair and regeneration process, and high bioavailability is still highly desirable. Hydrogel, as an ideal delivery system, has an excellent loading capacity and sustainable release behavior, as well as tunable physical and chemical properties to adapt to various biomedical scenarios; thus, it is thought to be a suitable carrier system for nerve repair. This paper reviews the structure and classification of hydrogels and summarizes the fabrication and processing methods that can prepare a suitable hydrogel carrier with specific physical and chemical properties. Furthermore, the modulation of the physical and chemical properties of hydrogels is also discussed in detail in order to obtain a better therapeutic effect to promote nerve repair. Finally, the future perspectives of hydrogel microsphere carriers for stroke rehabilitation are highlighted.
Collapse
Affiliation(s)
- Xiaoyu Ma
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
| | - Mengjie Wang
- School of Beijing Rehabilitation Medicine, Capital Medical University, Beijing 100044, China;
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
| | - Yusi Wu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.W.); (J.W.)
- NUIST-UoR International Research Institute, Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jin Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; (Y.W.); (J.W.)
| | - Fuhai Gao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Jianing Xi
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical School, Beijing 100044, China; (Y.R.); (F.G.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
- Correspondence: (Z.L.); (J.X.); (L.Y.); Tel.: +86-1056981363 (Z.L.); +86-1056981279 (J.X.); +86-1068912650 (L.Y.)
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (X.M.); (Z.F.)
| |
Collapse
|
19
|
Multifunctional biomimetic hydrogel based on graphene nanoparticles and sodium alginate for peripheral nerve injury therapy. BIOMATERIALS ADVANCES 2022; 135:212727. [PMID: 35929199 DOI: 10.1016/j.bioadv.2022.212727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Peripheral nerve injury (PNI) caused by injury may influence the patients' lifelong mobility unless there is an appropriate treatment. Tissue engineering has become a hot field to replace traditional autologous nerve transplantation due to its low surgical damage and easy-to-industrial advantages. Graphene (GR) is a kind of carbon nanomaterial with good electrical and mechanical properties that satisfy the demand for a good tissue scaffold for nerve regeneration. Herein, a novel and biosafe hydrogel is fabricated by using graphene and sodium alginate (GR-SA) together. This hydrogel not only can mimic the nerve growth microenvironment but also can promote the expression of neurotrophic substances and growth factors. Additionally, GR-SA hydrogel can significantly reduce inflammatory factors. Moreover, the results of both in vitro and in vivo tests demonstrate that GR-SA hydrogel has a promising prospect in PNI regeneration.
Collapse
|
20
|
Bioactive injectable hydrogels for on demand molecule/cell delivery and for tissue regeneration in the central nervous system. Acta Biomater 2022; 140:88-101. [PMID: 34852302 DOI: 10.1016/j.actbio.2021.11.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/21/2022]
Abstract
Currently there are no potential curative therapies that can improve the central nervous system (CNS) regeneration after traumatic injuries or diseases. Indeed, the regeneration of CNS is greatly impaired by limited drug penetration across the blood brain barrier (BBB), poor drug targeting, deficient progenitor neural cells and limited proliferation of mature neural cells. To overcome these limitations, bioengineered injectable hydrogels in combination with drug and cell therapy have been proposed to mimic the complexity of the CNS microenvironment and architecture. Additionally, to enhance relevant CNS regeneration, proper biophysical and biochemical cues are needed. Recently, great efforts have been devoted to tailor stimuli-responsive hydrogels as novel carrier systems which are able to guide neural tissue regeneration. This review provides an extensive overview on the most promising injectable hydrogels for neural tissue engineering. A special emphasis is made to highlight the ability of these hydrogels to deliver bioactive compounds/cells upon the exposure to internal and external stimuli. Bioactive injectable hydrogels have a broad application in central nervous system's (CNS) regeneration. This review gives an overview of the latest pioneering approaches in CNS recovery using stimuli-responsive hydrogels for several neurodegenerative disorders. STATEMENT OF SIGNIFICANCE: This review summarizes the latest innovations on bioactive injectable hydrogels, focusing on tailoring internal/external stimuli-responsive hydrogels for the new injectable systems design, able to guide neural tissue response. The purpose is to highlight the advantages and the limitations of thermo-responsive, photo responsive, magnetic responsive, electric responsive, ultrasound responsive and enzymes-triggered injectable hydrogels in developing customizable neurotherapies. We believe that this comprehensive review will help in identifying the strengths and gaps in the existing literature and to further support the use of injectable hydrogels in stimulating CNS regeneration.
Collapse
|
21
|
Jiang T, Yang T, Bao Q, Sun W, Yang M, Mao C. Construction of tissue-customized hydrogels from cross-linkable materials for effective tissue regeneration. J Mater Chem B 2021; 10:4741-4758. [PMID: 34812829 DOI: 10.1039/d1tb01935j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hydrogels are prevalent scaffolds for tissue regeneration because of their hierarchical architectures along with outstanding biocompatibility and unique rheological and mechanical properties. For decades, researchers have found that many materials (natural, synthetic, or hybrid) can form hydrogels using different cross-linking strategies. Traditional strategies for fabricating hydrogels include physical, chemical, and enzymatical cross-linking methods. However, due to the diverse characteristics of different tissues/organs to be regenerated, tissue-customized hydrogels need to be developed through precisely controlled processes, making the manufacture of hydrogels reliant on novel cross-linking strategies. Thus, hybrid cross-linkable materials are proposed to tackle this challenge through hybrid cross-linking strategies. Here, different cross-linkable materials and their associated cross-linking strategies are summarized. From the perspective of the major characteristics of the target tissues/organs, we critically analyze how different cross-linking strategies are tailored to fit the regeneration of such tissues and organs. To further advance this field, more appropriate cross-linkable materials and cross-linking strategies should be investigated. In addition, some innovative technologies, such as 3D bioprinting, the internet of medical things (IoMT), and artificial intelligence (AI), are also proposed to improve the development of hydrogels for more efficient tissue regeneration.
Collapse
Affiliation(s)
- Tongmeng Jiang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Weilian Sun
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China.
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang 310058, P. R. China.
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
22
|
Li Z, Liu M, Ke L, Wang LJ, Wu C, Li C, Li Z, Wu YL. Flexible polymeric nanosized micelles for ophthalmic drug delivery: research progress in the last three years. NANOSCALE ADVANCES 2021; 3:5240-5254. [PMID: 36132623 PMCID: PMC9417891 DOI: 10.1039/d1na00596k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 05/17/2023]
Abstract
The eye is a complex structure with a variety of anatomical barriers and clearance mechanisms, so the provision of safe and effective ophthalmic drug delivery technology is a major challenge. In the past few decades, a number of reports have shown that nano-delivery platforms based on polymeric micelles are of great interest, because of their hydrophobic core that encapsulates lipid-soluble drugs and small size with high penetration, allowing long-term drug retention and posterior penetration in the eye. Furthermore, as an ocular delivery platform, polymeric micelles not only cover the single micellar drug delivery system formed by poloxamer, chitosan or other polymers, but also include composite drug delivery systems like micelle-encapsulated hydrogels and micelle-embedded contact lenses. In this review, a number of ophthalmic micelles that have emerged in the last three years will be systematically reviewed, with a summary of and discussion on their unique advantages or unique drug delivery performance. Last but not least, the current challenges of polymeric micelle formulations in potential clinical ophthalmic therapeutic applications will also be proposed, which might be helpful for future design of ocular drug delivery formulations.
Collapse
Affiliation(s)
- Zhiguo Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Li-Juan Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Cheng Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University Xiamen 361102 China
| | - Zibiao Li
- Department of Materials Science and Engineering, National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| |
Collapse
|
23
|
The Pathogenesis and Therapeutic Approaches of Diabetic Neuropathy in the Retina. Int J Mol Sci 2021; 22:ijms22169050. [PMID: 34445756 PMCID: PMC8396448 DOI: 10.3390/ijms22169050] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy is a major retinal disease and a leading cause of blindness in the world. Diabetic retinopathy is a neurovascular disease that is associated with disturbances of the interdependent relationship of cells composed of the neurovascular units, i.e., neurons, glial cells, and vascular cells. An impairment of these neurovascular units causes both neuronal and vascular abnormalities in diabetic retinopathy. More specifically, neuronal abnormalities including neuronal cell death and axon degeneration are irreversible changes that are directly related to the vision reduction in diabetic patients. Thus, establishment of neuroprotective and regenerative therapies for diabetic neuropathy in the retina is an emergent task for preventing the blindness of patients with diabetic retinopathy. This review focuses on the pathogenesis of the neuronal abnormalities in diabetic retina including glial abnormalities, neuronal cell death, and axon degeneration. The possible molecular cell death pathways and intrinsic survival and regenerative pathways are also described. In addition, therapeutic approaches for diabetic neuropathy in the retina both in vitro and in vivo are presented. This review should be helpful for providing clues to overcome the barriers for establishing neuroprotection and regeneration of diabetic neuropathy in the retina.
Collapse
|
24
|
Li L, Deng F, Qiu H, Li Y, Gong Z, Wang L, Wang J, Wu W, Nan K. An adherent drug depot for retinal ganglion cell protection and regeneration in rat traumatic optic neuropathy models. RSC Adv 2021; 11:22761-22772. [PMID: 35480428 PMCID: PMC9034353 DOI: 10.1039/d0ra10362d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
Traumatic optic neuropathy (TON) describes an injury to the optic nerve following either blunt or penetrating trauma, and remains an important cause of vision loss. No generalized treatment of TON has been established so far to restore the injured optic nerve. We developed an adherent drug-encapsulated bi-layered depot (DBP) as a dual drug vehicle for local treatment to protect the residual retinal ganglion cells (RGCs) and regenerate axons following optic nerve damage. The inner layer of the depot was prepared by co-electrospinning poly(d,l-lactide-co-glycolide acid) (PLGA: 75 : 25) and collagen (COL) with the hydrophobic corticosteroid triamcinolone acetonide (TA) loaded. The outer layer was made of PLGA and the hydrophilic neuroprotective agent Fasudil (FA). The DBP showed suitable morphology, hydrophilicity and mechanical properties, and slowly released TA and FA in vitro by undergoing time-dependent degradation and swelling. All depots showed good biocompatibility with L929 mouse fibroblasts, and DBP was helpful in maintaining the morphology of RGCs in vitro. In addition, direct implantation of DBP at the injured optic nerve in a rat model mitigated inflammation and the death of RGCs, and increased the expression of nerve growth-related protein GAP-43. Therefore, DBP maybe a promising local therapy against TON in future.
Collapse
Affiliation(s)
- Lingli Li
- School of Ophthalmology & Optometry, Affiliated Eye Hospital, Wenzhou Medical University Zhejiang Province P. R. China .,State Key Laboratory of Ophthalmology, Optometry and Visual Science Zhejiang Province P. R. China
| | - Fen Deng
- School of Ophthalmology & Optometry, Affiliated Eye Hospital, Wenzhou Medical University Zhejiang Province P. R. China .,The 2nd Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University Zhejiang Province P. R. China
| | - Haijun Qiu
- School of Ophthalmology & Optometry, Affiliated Eye Hospital, Wenzhou Medical University Zhejiang Province P. R. China .,State Key Laboratory of Ophthalmology, Optometry and Visual Science Zhejiang Province P. R. China
| | - Yao Li
- School of Ophthalmology & Optometry, Affiliated Eye Hospital, Wenzhou Medical University Zhejiang Province P. R. China .,State Key Laboratory of Ophthalmology, Optometry and Visual Science Zhejiang Province P. R. China
| | - Zan Gong
- School of Ophthalmology & Optometry, Affiliated Eye Hospital, Wenzhou Medical University Zhejiang Province P. R. China .,State Key Laboratory of Ophthalmology, Optometry and Visual Science Zhejiang Province P. R. China
| | - Lei Wang
- University of Chinese Academy of Sciences Wenzhou Institute Zhejiang Province P. R. China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering Wenzhou Zhejiang 325027 China
| | - Jingjie Wang
- School of Ophthalmology & Optometry, Affiliated Eye Hospital, Wenzhou Medical University Zhejiang Province P. R. China .,State Key Laboratory of Ophthalmology, Optometry and Visual Science Zhejiang Province P. R. China
| | - Wencan Wu
- School of Ophthalmology & Optometry, Affiliated Eye Hospital, Wenzhou Medical University Zhejiang Province P. R. China .,State Key Laboratory of Ophthalmology, Optometry and Visual Science Zhejiang Province P. R. China
| | - Kaihui Nan
- School of Ophthalmology & Optometry, Affiliated Eye Hospital, Wenzhou Medical University Zhejiang Province P. R. China .,State Key Laboratory of Ophthalmology, Optometry and Visual Science Zhejiang Province P. R. China
| |
Collapse
|
25
|
Oshitari T. Understanding intrinsic survival and regenerative pathways through in vivo and in vitro studies: implications for optic nerve regeneration. EXPERT REVIEW OF OPHTHALMOLOGY 2021. [DOI: 10.1080/17469899.2021.1912595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Japan
- Department of Ophthalmology, International University of Health and Welfare School of Medicine, Narita, Japan
| |
Collapse
|