1
|
Khalil RKS, ElLeithy AE, Ayoup MS, Abu-Saied MA, Sharaby MR. Zein-based nisin-loaded electrospun nanofibers as active packaging mats for control of Listeria monocytogenes on peach. Food Chem 2024; 459:140441. [PMID: 39032364 DOI: 10.1016/j.foodchem.2024.140441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Zein-based nanofibers (NFs) functionalized with nisin (NS), reinforced with montmorillonite nanoclay (nMMT) were fabricated by uniaxial electrospinning (ES) for the first time to preserve yellow peach. Spinnability/viscosity/conductivity optimizations generated porous (95.09%), bead-free, ultrathin (119 nm) NFs of low hydrophobicity (26.05°). Glutaraldehyde (GTA) crosslinking fostered positive outcomes of tensile strength (1.23 MPa), elongation (5.0%), hydrophobicity (99.46°), surface area (201.38 m2.g-1), pore size (2.88 nm), thermal stability (Tmax = 342 °C), antioxidant/cytotoxic activities in optimized NFs that released NS sustainably according to Korsmeyer-Peppas model indicating a Fickian diffusion mechanism with R2 = 0.9587. The novel NFs inhibited growth of Listeria monocytogenes/aerobic mesophilic populations in peach after 4 days of abusive storage, evincing their robustness in food contact applications. Simultaneously, quality parameters (moisture/texture/browning/total soluble solids/pH) and peach physical appearance were maintained for up to 8 days, endorsing the practical value of zein-based NFs as a non-thermal postharvest intervention for prolonging fruits storage life.
Collapse
Affiliation(s)
- Rowaida K S Khalil
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Ahmed E ElLeithy
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Mohammed S Ayoup
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Mohamed A Abu-Saied
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Muhammed R Sharaby
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| |
Collapse
|
2
|
Wang S, Li J, Wang P, Zhang M, Liu S, Wang R, Li Y, Ren F, Fang B. Improvement in the Sustained-Release Performance of Electrospun Zein Nanofibers via Crosslinking Using Glutaraldehyde Vapors. Foods 2024; 13:1583. [PMID: 38790885 PMCID: PMC11121536 DOI: 10.3390/foods13101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Volatile active ingredients in biopolymer nanofibers are prone to burst and uncontrolled release. In this study, we used electrospinning and crosslinking to design a new sustained-release active packaging containing zein and eugenol (EU). Vapor-phase glutaraldehyde (GTA) was used as the crosslinker. Characterization of the crosslinked zein nanofibers was conducted via scanning electron microscopy (SEM), mechanical properties, water resistance, and Fourier transform infrared (FT-IR) spectroscopy. It was observed that crosslinked zein nanofibers did not lose their fiber shape, but the diameter of the fibers increased. By increasing the crosslink time, the mechanical properties and water resistance of the crosslinked zein nanofibers were greatly improved. The FT-IR results demonstrated the formation of chemical bonds between free amino groups in zein molecules and aldehyde groups in GTA molecules. EU was added to the zein nanofibers, and the corresponding release behavior in PBS was investigated using the dialysis membrane method. With an increase in crosslink time, the release rate of EU from crosslinked zein nanofibers decreased. This study demonstrates the potential of crosslinking by GTA vapors on the controlled release of the zein encapsulation structure containing EU. Such sustainable-release nanofibers have promising potential for the design of fortified foods or as active and smart food packaging.
Collapse
Affiliation(s)
- Shumin Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
| | - Jingyu Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.L.); (M.Z.)
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.L.); (M.Z.)
| | - Siyuan Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
| |
Collapse
|
3
|
Vargas-Osorio Z, González Castillo EI, Mutlu N, Vidomanová E, Michálek M, Galusek D, Boccaccini AR. Tailorable mechanical and degradation properties of KCl-reticulated and BDDE-crosslinked PCL/chitosan/κ-carrageenan electrospun fibers for biomedical applications: Effect of the crosslinking-reticulation synergy. Int J Biol Macromol 2024; 265:130647. [PMID: 38460627 DOI: 10.1016/j.ijbiomac.2024.130647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The development of intricated and interconnected porous mats is desired for many applications in biomedicine and other relevant fields. The mats that comprise the use of natural, bioactive, and biodegradable polymers are the focus of current research activities. In the present work, crosslinked fibers with improved characteristics were produced by incorporating 1,4-butanediol diglycidyl ether (BDDE) into a polymer formulation containing polycaprolactone (PCL), chitosan (CS), and κappa-carrageenan (κ-C). A slight variation of formic acid (FA)/acetic acid (AA) ratio used as a solvent system, significantly affected the characteristics of the produced fiber mats. Both polysaccharides and BDDE played a major role in tailoring mechanical properties when fibrous scaffolds were reticulated under KCl-mediated basic conditions for determined periods of time at 50 °C. In vitro biological assessment of the electrospun fiber mats revealed proliferation of MC3T3-E1 cells when incubated for 1 and 7 days. After staining the cells with 4',6-diamidino-2-phenylindole (DAPI)/rhodamine phalloidin an autofluorescence response was observed by fluorescence microscopy in the scaffold manufactured using a solvent with higher FA/AA ratio due to the formation of microfibers. The results demonstrated the potential of the BDDE-crosslinked PCL/CS/κ-C electrospun fibers as promising materials for biomedical applications that may include soft and bone tissue regeneration.
Collapse
Affiliation(s)
- Zulema Vargas-Osorio
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 910 58 Erlangen, Germany.
| | - Eduin I González Castillo
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 910 58 Erlangen, Germany; AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Nurshen Mutlu
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 910 58 Erlangen, Germany
| | - Eva Vidomanová
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia
| | - Martin Michálek
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia
| | - Dušan Galusek
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia; Joint Glass Centre of the IIC SAS, TnUAD, FChPT STU, Študentská 2, 911 50 Trenčín, Slovakia
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 910 58 Erlangen, Germany.
| |
Collapse
|
4
|
Darwesh AY, Zhang Y, Aghda NH, Alkadi F, Maniruzzaman M. Advanced 3D Electrospinning "Xspin" System: Fabrication of Bifiber Floating Oral Pharmaceutical Scaffolds for Controlled Drug Delivery. Mol Pharm 2024; 21:916-931. [PMID: 38235686 DOI: 10.1021/acs.molpharmaceut.3c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Electrospinning has become a widely used and efficient method for manufacturing nanofibers from diverse polymers. This study introduces an advanced electrospinning technique, Xspin - a multi-functional 3D printing platform coupled with electrospinning system, integrating a customised 3D printhead, MaGIC - Multi-channeled and Guided Inner Controlling printheads. The Xspin system represents a cutting-edge fusion of electrospinning and 3D printing technologies within the realm of pharmaceutical sciences and biomaterials. This innovative platform excels in the production of novel fiber with various materials and allows for the creation of highly customized fiber structures, a capability hitherto unattainable through conventional electrospinning methodologies. By integrating the benefits of electrospinning with the precision of 3D printing, the Xspin system offers enhanced control over the scaffold morphology and drug release kinetics. Herein, we fabricated a model floating pharmaceutical dosage for the dual delivery of curcumin and ritonavir and thoroughly characterized the product. Fourier transform infrared (FTIR) spectroscopy demonstrated that curcumin chemically reacted with the polymer during the Xspin process. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) confirmed the solid-state properties of the active pharmaceutical ingredient after Xspin processing. Scanning electron microscopy (SEM) revealed the surface morphology of the Xspin-produced fibers, confirming the presence of the bifiber structure. To optimize the quality and diameter control of the electrospun fibers, a design of experiment (DoE) approach based on quality by design (QbD) principles was utilized. The bifibers expanded to approximately 10-11 times their original size after freeze-drying and effectively entrapped 87% curcumin and 84% ritonavir. In vitro release studies demonstrated that the Xspin system released 35% more ritonavir than traditional pharmaceutical pills in 2 h, with curcumin showing complete release in pH 1.2 in 5 min, simulating stomach media. Furthermore, the absorption rate of curcumin was controlled by the characteristics of the linked polymer, which enables both drugs to be absorbed at the desired time. Additionally, multivariate statistical analyses (ANOVA, pareto chart, etc.) were conducted to gain better insights and understanding of the results such as discern statistical differences among the studied groups. Overall, the Xspin system shows significant potential for manufacturing nanofiber pharmaceutical dosages with precise drug release capabilities, offering new opportunities for controlled drug delivery applications.
Collapse
Affiliation(s)
- Alaa Y Darwesh
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677-1848, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Yu Zhang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677-1848, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Niloofar H Aghda
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Faez Alkadi
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi 38677-1848, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Quiroga D, Coy-Barrera C. Use of Chitosan as a Precursor for Multiple Applications in Medicinal Chemistry: Recent Significant Contributions. Mini Rev Med Chem 2024; 24:1651-1684. [PMID: 38500287 DOI: 10.2174/0113895575275799240306105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Chitosan (CS) is a polymer made up of mainly deacetylated β-1,4 D-glucosamine units, which is part of a large group of D-glucosamine oligomers known as chitooligosaccharides, which can be obtained from chitin, most abundant natural polymer after cellulose and central component of the shrimp exoskeleton. It is known that it can be used for the development of materials, among which its use stands out in wastewater treatment (removal of metal ions, dyes, and as a membrane in purification processes), food industry (anti-cholesterol and fat, packaging material, preservative, and food additive), agriculture (seed and fertilizer coating, controlled release agrochemicals), pulp and paper industry (surface treatment, adhesive paper), cosmetics (body creams, lotions, etc.), in the engineering of tissues, wound healing, as excipients for drug administration, gels, membranes, nanofibers, beads, microparticles, nanoparticles, scaffolds, sponges, and diverse biological ones, specifically antibacterial and antifungal activities. This article reviews the main contributions published in the last ten years regarding the use and application of CS in medical chemistry. The applications exposed here involve regenerative medicine in the design of bioprocesses and tissue engineering, Pharmaceutical sciences to obtain biomaterials, polymers, biomedicine, and the use of nanomaterials and nanotechnology, toxicology, and Clinical Pharmaceuticals, emphasizing the perspectives and the direction that can take research in this area.
Collapse
Affiliation(s)
- Diego Quiroga
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| | - Carlos Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| |
Collapse
|
6
|
Herdiana Y. Chitosan Nanoparticles for Gastroesophageal Reflux Disease Treatment. Polymers (Basel) 2023; 15:3485. [PMID: 37631542 PMCID: PMC10460071 DOI: 10.3390/polym15163485] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Gastroesophageal Reflux Disease (GERD) is a chronic ailment that results from the backward flow of stomach acid into the esophagus, causing heartburn and acid regurgitation. This review explores nanotechnology as a novel treatment approach for GERD. Chitosan nanoparticles (CSNPs) offer several advantages, including biocompatibility, biodegradability, and targeted drug delivery capabilities. CSNPs have been extensively studied due to their ability to encapsulate and release medications in a controlled manner. Different nanoparticle (NP) delivery systems, including gels, microspheres, and coatings, have been developed to enhance drug retention, drug targeting, and controlled release in the esophagus. These nanoparticles can target specific molecular pathways associated with acid regulation, esophageal tissue protection, and inflammation modulation. However, the optimization of nanoparticle formulations faces challenges, including ensuring stability, scalability, and regulatory compliance. The future may see CSNPs combined with other treatments like proton pump inhibitors (PPIs) or mucosal protectants for a synergistic therapeutic approach. Thus, CSNPs provide exciting opportunities for novel GERD treatment strategies.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
7
|
Refate A, Mohamed Y, Mohamed M, Sobhy M, Samhy K, Khaled O, Eidaroos K, Batikh H, El-Kashif E, El-Khatib S, Mehanny S. Influence of electrospinning parameters on biopolymers nanofibers, with emphasis on cellulose & chitosan. Heliyon 2023; 9:e17051. [PMID: 37484420 PMCID: PMC10361112 DOI: 10.1016/j.heliyon.2023.e17051] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Background Electrospinning is an effective method for producing high-quality biopolymer nanofibers, such as cellulose and chitosan. Cellulose nanofibers have excellent mechanical properties and biocompatibility, making them a promising material for tissue engineering. Chitosan nanofibers are biodegradable, biocompatible, and antimicrobial, making them ideal for biomedical applications. The electrospinning parameters, including solution concentration, power supply voltage, orifice diameter, temperature, humidity, and flow rate, play a crucial role in determining the nanofiber diameter, morphology, and mechanical properties, as well as their suitability for various applications. Objective This systematic review aims to synthesize and evaluate the current evidence on the influence of electrospinning parameters on the production and properties of cellulose and chitosan nanofibers. Methods A comprehensive search of electronic databases was conducted to identify relevant studies. The inclusion criteria were studies that investigated the effect of electrospinning parameters on cellulose and chitosan nanofibers. Results It was found that for cellulose, the average fiber diameter increased with increasing each of solution concentration, power supply voltage, orifice diameter, temperature, and humidity. Contrary to tip - collector distance and some optimal points in temperature, where average fiber diameter decreased. For chitosan, the change in voltage and tip to collector distance did not alter the average fiber diameter except for some readings of voltage, which behaved differently. On the other hand, the average fiber diameter increased with increasing flow rate. Conclusion The review highlights the importance of considering electrospinning parameters in the production of high-quality biopolymer nanofibers and provides insights into the optimization of these parameters for specific applications. This review also highlights the need for further research to better understand the underlying mechanisms of electrospinning and to optimize the process to produce biopolymer nanofibers with improved properties.
Collapse
Affiliation(s)
- Abdallah Refate
- Mechanical Design & Production Dept., Faculty of Engineering, Cairo University, Giza, Egypt
| | - Yehia Mohamed
- Mechatronics Program, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Mariam Mohamed
- Electronics and Communication Dept., Faculty of Engineering, Cairo University, Giza, Egypt
| | - Maiada Sobhy
- Mechanical Design & Production Dept., Faculty of Engineering, Cairo University, Giza, Egypt
| | - Karim Samhy
- Mechanical Design & Production Dept., Faculty of Engineering, Cairo University, Giza, Egypt
| | - Omar Khaled
- Mechanical Design & Production Dept., Faculty of Engineering, Cairo University, Giza, Egypt
| | - Khaled Eidaroos
- Mechanical Design & Production Dept., Faculty of Engineering, Cairo University, Giza, Egypt
| | - Hazem Batikh
- Mechanical Design & Production Dept., Faculty of Engineering, Cairo University, Giza, Egypt
| | - Emad El-Kashif
- Mechanical Design & Production Dept., Faculty of Engineering, Cairo University, Giza, Egypt
| | - Samah El-Khatib
- Mechanical Engineering Dept., Faculty of Engineering & Technology, Future University in Egypt, 11835 Cairo, Egypt
| | - Sherif Mehanny
- Mechanical Design & Production Dept., Faculty of Engineering, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Chen S, Tian H, Mao J, Ma F, Zhang M, Chen F, Yang P. Preparation and application of chitosan-based medical electrospun nanofibers. Int J Biol Macromol 2023; 226:410-422. [PMID: 36502949 DOI: 10.1016/j.ijbiomac.2022.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Chitosan is a kind of polysaccharide cationic polymer, which has excellent biocompatibility, biodegradability and biological activity. In recent years, chitosan has been widely used as medical materials because of its non-toxicity, non-immunogenicity and rich sources. This paper reviews chitosan chemistry, the basic principles and influence of electrospinning technology, the blending of chitosan with polyethylene oxide, polyvinyl alcohol, polycaprolactone, polylactic acid, protein, polysaccharide and other polymer materials, the blending of chitosan with oxides, metals, carbon-based and other inorganic substances for electrospinning, the application of chitosan electrospinning nanofibers in medical field and its mechanism in clinical application. In order to provide reference for the in-depth study of electrospinning technology in the field of medical and health.
Collapse
Affiliation(s)
- Shujie Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Haoran Tian
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jinlong Mao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Feng Ma
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Mengtian Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Feixiang Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pengfei Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
9
|
Monirul Islam M, HR V, Durga Bhavani P, Goudanavar PS, Naveen NR, Ramesh B, Fattepur S, Narayanappa Shiroorkar P, Habeebuddin M, Meravanige G, Telsang M, Sreeharsha N. Optimization of process parameters for fabrication of electrospun nanofibers containing neomycin sulfate and Malva sylvestris extract for a better diabetic wound healing. Drug Deliv 2022; 29:3370-3383. [PMID: 36404771 PMCID: PMC9848420 DOI: 10.1080/10717544.2022.2144963] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetes mellitus is one of the most concerning conditions, and its chronic consequences are almost always accompanied by infection, oxidative stress, and inflammation. Reducing excessive reactive oxygen species and the wound's inflammatory response is a necessary treatment during the acute inflammatory phase of diabetic wound healing. Malva sylvestris extract (MS) containing nanofibers containing neomycin sulfate (NS) were synthesized for this investigation, and their impact on the healing process of diabetic wounds was assessed. Using Design Expert, the electrospinning process for the fabrication of NS nanofibers (NS-NF) was adjusted for applied voltage (X1), the distance between the needle's tip and the collector (X2), and the feed rate (X3) for attaining desired entrapment efficacy [EE] and average nanofiber diameter (ND). The optimal formulation can be prepared with 19.11 kV of voltage, 20 cm of distance, and a flow rate of 0.502 mL/h utilizing the desirability approach. All the selected parameters and responses have their impact on drug delivery from nanofibers. In addition, M. sylvestris extracts have been added into the optimal formulation [MS-NS-NF] and assessed for their surface morphology, tensile strength, water absorption potential, and in vitro drug release studies. The NS and MS delivery from MS-NS-NF has been extended for more than 60 h. M. sylvestris-loaded nanofibers demonstrated superior antibacterial activity compared to plain NS nanofibers. The scaffolds featured a broad aspect and a highly linked porous fibrous network structure. Histomorphometry study and the in vitro scratch assay demonstrate the formulation's efficacy in treating diabetic wound healing. The cells treated with MS-NS-NF in vivo demonstrated that wound dressings successfully reduced both acute and chronic inflammations. To improve the healing of diabetic wounds, MS-NS-NF may be regarded as an appropriate candidate for wound dressing.
Collapse
Affiliation(s)
- Mohammed Monirul Islam
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia,Nagaraja Sreeharsha Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa31982, Saudi Arabia or
| | - Varshini HR
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India
| | - Penmetsa Durga Bhavani
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Telangana, India
| | - Prakash S. Goudanavar
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India,Nagaraja Sreeharsha Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa31982, Saudi Arabia or
| | - N. Raghavendra Naveen
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India,CONTACT N. Raghavendra Naveen Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, 571448, India or
| | - B. Ramesh
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India
| | - Santosh Fattepur
- School of Pharmacy, Management and Science University, Selangor, Malaysia,Santosh Fattepur School of Pharmacy, Management and Science University, Seksyen 13, Shah Alam40100, Selangor, Malaysia
| | | | - Mohammed Habeebuddin
- Department of Medicine, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Girish Meravanige
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Mallikarjun Telsang
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia,Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bangalore, India,Nagaraja Sreeharsha Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa31982, Saudi Arabia or
| |
Collapse
|
10
|
Subramanian DA, Langer R, Traverso G. Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. J Nanobiotechnology 2022; 20:362. [PMID: 35933341 PMCID: PMC9356434 DOI: 10.1186/s12951-022-01539-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Oral delivery of therapeutics is the preferred route of administration due to ease of administration which is associated with greater patient medication adherence. One major barrier to oral delivery and intestinal absorption is rapid clearance of the drug and the drug delivery system from the gastrointestinal (GI) tract. To address this issue, researchers have investigated using GI mucus to help maximize the pharmacokinetics of the therapeutic; while mucus can act as a barrier to effective oral delivery, it can also be used as an anchoring mechanism to improve intestinal residence. Nano-drug delivery systems that use materials which can interact with the mucus layers in the GI tract can enable longer residence time, improving the efficacy of oral drug delivery. This review examines the properties and function of mucus in the GI tract, as well as diseases that alter mucus. Three broad classes of mucus-interacting systems are discussed: mucoadhesive, mucus-penetrating, and mucolytic drug delivery systems. For each class of system, the basis for mucus interaction is presented, and examples of materials that inform the development of these systems are discussed and reviewed. Finally, a list of FDA-approved mucoadhesive, mucus-penetrating, and mucolytic drug delivery systems is reviewed. In summary, this review highlights the progress made in developing mucus-interacting systems, both at a research-scale and commercial-scale level, and describes the theoretical basis for each type of system.
Collapse
Affiliation(s)
- Deepak A Subramanian
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Motawea A, Abd El Hady WE, Ahmed El-Emam G. The protective impact of adapted trimebutine maleate-loaded nanostructured lipid carriers for alleviating the severity of acute colitis. Drug Deliv 2022; 29:906-924. [PMID: 35297699 PMCID: PMC8933020 DOI: 10.1080/10717544.2022.2050847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nanoparticles for colon-drug delivery were designed and evaluated to solve many discrepancy issues such as high adverse effects of released drugs, insufficient drug amount at diseased areas, and unintentionally premature drug release to noninflamed GIT regions. Herein, the goal of this work was to convert trimebutine maleate (TMB) into nanostructured lipid carriers (NLC) in order to improve its protective effects in ulcerative colitis. NLC of TMB was prepared by the hot homogenization followed by ultra-sonication method. A full 42-factorial design was used to estimate the produced TMB-NLC. The study design included the exploration of the impact of two independent variables namely lipid mix amount and ratio (glyceryl mono stearate and capryol 90), surfactant concentration (0.5, 1, 1.5, and 2%), on the particle size, polydispersity index, and the entrapment efficiency (EE%). The protective activity of F9 was examined through macroscopical scores, histopathological changes, immunohistochemical localization of tumor necrosis factor-α (TNF-α) and examination of oxidative stress such as reduced glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) against acetic acid-induced colitis in rats. Consistent with our expectations, the orally administered optimized formula (F9) alleviated the severity of colitis in acetic acid-induced rat model of colitis likely owing to the controlled release compared to free TMB. We aimed to develop TMB-loaded NLC for the treatment of acute colitis with the goal of providing a superior drug safety profile over long-term remission and maintenance therapy.
Collapse
Affiliation(s)
- Amira Motawea
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | - Ghada Ahmed El-Emam
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
12
|
The Promising Role of Chitosan-Poloxamer 188 Nanocrystals in Improving Diosmin Dissolution and Therapeutic Efficacy against Ferrous Sulfate-Induced Hepatic Injury in Rats. Pharmaceutics 2021; 13:pharmaceutics13122087. [PMID: 34959367 PMCID: PMC8709147 DOI: 10.3390/pharmaceutics13122087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Diosmin (DSN) exhibits poor water solubility and low bioavailability. Although nanocrystals (NCs) are successful for improving drug solubility, they may undergo crystal growth. Therefore, DSN NCs were prepared, employing sonoprecipitation utilizing different stabilizers. The optimum stabilizer was combined with chitosan (CS) as an electrostatic stabilizer. NCs based on 0.15% w/v poloxamer 188 (PLX188) as a steric stabilizer and 0.04% w/v CS were selected because they showed the smallest diameter (368.93 ± 0.47 nm) and the highest ζ-potential (+40.43 ± 0.15 mV). Mannitol (1% w/v) hindered NC enlargement on lyophilization. FT-IR negated the chemical interaction of NC components. DSC and XRD were performed to verify the crystalline state. DSN dissolution enhancement was attributed to the nanometric rod-shaped NCs, the high surface area, and the improved wettability. CS insolubility and its diffusion layer may explain controlled DSN release from CS-PLX188 NCs. CS-PLX188 NCs were more stable than PLX188 NCs, suggesting the significance of the combined electrostatic and steric stabilization strategies. The superiority of CS-PLX188 NCs was indicated by the significantly regulated biomarkers, pathological alterations, and inducible nitric oxide synthase (iNOS) expression of the hepatic tissue compared to DSN suspension and PLX188 NCs. Permeation, mucoadhesion, and cellular uptake enhancement by CS may explain this superiority.
Collapse
|
13
|
Vrettos NN, Roberts CJ, Zhu Z. Gastroretentive Technologies in Tandem with Controlled-Release Strategies: A Potent Answer to Oral Drug Bioavailability and Patient Compliance Implications. Pharmaceutics 2021; 13:pharmaceutics13101591. [PMID: 34683884 PMCID: PMC8539558 DOI: 10.3390/pharmaceutics13101591] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
There have been many efforts to improve oral drug bioavailability and therapeutic efficacy and patient compliance. A variety of controlled-release oral delivery systems have been developed to meet these needs. Gastroretentive drug delivery technologies have the potential to achieve retention of the dosage form in the upper gastrointestinal tract (GIT) that can be sufficient to ensure complete solubilisation of the drugs in the stomach fluids, followed by subsequent absorption in the stomach or proximal small intestine. This can be beneficial for drugs that have an “absorption window” or are absorbed to a different extent in various segments of the GIT. Therefore, gastroretentive technologies in tandem with controlled-release strategies could enhance both the therapeutic efficacy of many drugs and improve patient compliance through a reduction in dosing frequency. The paper reviews different gastroretentive drug delivery technologies and controlled-release strategies that can be combined and summarises examples of formulations currently in clinical development and commercially available gastroretentive controlled-release products. The different parameters that need to be considered and monitored during formulation development for these pharmaceutical applications are highlighted.
Collapse
|