1
|
Zhang Y, Ma M, Yang J, Qiu X, Xin L, Lu Y, Huang H, Zeng Z, Zeng D. Preparation, Characterization, and Oral Bioavailability of Solid Dispersions of Cryptosporidium parvum Alternative Oxidase Inhibitors. Int J Mol Sci 2024; 25:7025. [PMID: 39000132 PMCID: PMC11241238 DOI: 10.3390/ijms25137025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The phenylpyrazole derivative 5-amino-3-[1-cyano-2-(3-phenyl-1H-pyrazol-4-yl) vinyl]-1-phenyl-1H-pyrazole-4-carbonitrile (LN002), which was screened out through high-throughput molecular docking for the AOX target, exhibits promising efficacy against Cryptosporidium. However, its poor water solubility limits its oral bioavailability and therapeutic utility. In this study, solid dispersion agents were prepared by using HP-β-CD and Soluplus® and characterized through differential scanning calorimetry, Fourier transform infrared, powder X-ray diffraction, and scanning electron microscopy. Physical and chemical characterization showed that the crystal morphology of LN002 transformed into an amorphous state, thus forming a solid dispersion of LN002. The solid dispersion prepared with an LN002/HP-β-CD/Soluplus® mass ratio of 1:3:9 (w/w/w) exhibited significantly increased solubility and cumulative dissolution. Meanwhile, LN002 SDs showed good preservation stability under accelerated conditions of 25 °C and 75% relative humidity. The complexation of LN002 with HP-β-CD and Soluplus® significantly improved water solubility, pharmacological properties, absorption, and bioavailability.
Collapse
Affiliation(s)
- Yongxiang Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Minglang Ma
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Jinyu Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Xiaotong Qiu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Lin Xin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Yixing Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Huiguo Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| | - Dongping Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou 510642, China
| |
Collapse
|
2
|
Xu X, Yu Y, Wang Z, Zhou H, Zhang L, Wang H, Liu D, Liu Y, Wang J, Zhao Y, Liang X. Design, semi-synthesis and bioevaluation of koumine-like derivatives as potential antitumor agents in vitro and in vivo. Future Med Chem 2024; 16:1413-1428. [PMID: 39190473 DOI: 10.1080/17568919.2024.2350878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/23/2024] [Indexed: 08/28/2024] Open
Abstract
Aims: Five series of novel koumine-like compounds were designed, semi-synthesized and systematically evaluated for antitumor activities.Methods: All compounds were evaluated for antiproliferative activity against four human cancer cell lines, including HT-29, HCT-116, HCT-15 and Caco-2.Results: Most compounds exhibited much higher antiproliferation activities (IC50 <10 μM) than koumine. Two selected compounds A4 and C5 showed comparable antitumor effects to 5-FU in vivo, as well as better safety profiles. Further studies suggested that A4 and C5 could arrest HT-29 cell cycle in G2 phase and raise reactive oxygen species level, thus inducing cell apoptosis related to Erk MAPK and NF-κB signaling pathways inhibition.Conclusion: These results will greatly promote the druggability study of these koumine-like compounds.
Collapse
Affiliation(s)
- Xingjun Xu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116034,China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Yan Yu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116034,China
| | - Zhiwei Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116034,China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Han Zhou
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116034,China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Ling Zhang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Hao Wang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Dian Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116034,China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Yanfang Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116034,China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Jixia Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116034,China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Yaopeng Zhao
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116034,China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Xinmiao Liang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116034,China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| |
Collapse
|
3
|
Chen W, Zheng X, Lao W, Wang H, Chen S, Liu C, Chen Z, Bai Y, Zhang H, Zhan X, Wang B. Corrigendum to "Enhancement of the solubility and oral bioavailability of altrenogest through complexation with hydroxypropyl-β-cyclodextrin": [European Journal of Pharmaceutical Sciences194 (2024) 106691]. Eur J Pharm Sci 2024; 195:106728. [PMID: 38403507 DOI: 10.1016/j.ejps.2024.106728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Affiliation(s)
- Wojun Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xianwen Zheng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Wenxuan Lao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Hongxin Wang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shengfeng Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Canying Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhisheng Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hui Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiaoshu Zhan
- School of Life Science and Engineering, Foshan University, Foshan, China.
| | - Bingyun Wang
- School of Life Science and Engineering, Foshan University, Foshan, China.
| |
Collapse
|
4
|
Chen W, Zheng X, Lao W, Wang H, Chen S, Liu C, Chen Z, Bai Y, Zhang H, Zhan X, Wang B. Enhancement of the solubility and oral bioavailability of altrenogest through complexation with hydroxypropyl-β-cyclodextrin. Eur J Pharm Sci 2024; 194:106691. [PMID: 38181869 DOI: 10.1016/j.ejps.2024.106691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Altrenogest (ALT), a synthetic progestogen, serves a critical role in estrus synchronization among animals like gilts and mares. However, its practical application in animal husbandry is hampered due to its poor solubility and limited oral bioavailability. To address this challenge, a solvent evaporation method was employed to create an inclusion complex of ALT with hydroxypropyl-β-cyclodextrin (ALT/HP-β-CD). The formation of this inclusion complex was confirmed by scanning electron microscopy, power X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and docking calculations. In addition, we further conducted pharmacokinetic investigation involving gilts, comparing ALT/HP-β-CD inclusion complex to an ALT oral solution. The physicochemical characterization results unveiled a transformation of ALT's crystal morphology into an amorphous state, with ALT effectively entering the cavity of HP-β-CD. Compared with ALT, the solubility of ALT/HP-β-CD inclusion complex increased by 1026.51-fold, and its dissolution rate demonstrated significant improvement. Pharmacokinetic assessments further revealed that the oral bioavailability of ALT/HP-β-CD inclusion complex surpassed that of the ALT oral solution, with a relative bioavailability of 114.08 %. In conclusion, complexation with HP-β-CD represents a highly effective approach to improve both the solubility and oral bioavailability of ALT.
Collapse
Affiliation(s)
- Wojun Chen
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Xianwen Zheng
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Wenxuan Lao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Hongxin Wang
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Shengfeng Chen
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Canying Liu
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Zhisheng Chen
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Yinshan Bai
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Hui Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Xiaoshu Zhan
- School of Life Science and Engineering, Foshan University, Foshan 528231, China.
| | - Bingyun Wang
- School of Life Science and Engineering, Foshan University, Foshan 528231, China.
| |
Collapse
|
5
|
Reese TC, Devineni A, Smith T, Lalami I, Ahn JM, Raj GV. Evaluating physiochemical properties of FDA-approved orally administered drugs. Expert Opin Drug Discov 2024; 19:225-238. [PMID: 37921049 DOI: 10.1080/17460441.2023.2275617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Analyses of orally administered FDA-approved drugs from 1990 to 1993 enabled the identification of a set of physiochemical properties known as Lipinski's Rule of Five (Ro5). The original Ro5 and extended versions still remain the reference criteria for drug development programs. Since many bioactive compounds do not conform to the Ro5, we validated the relevance of and adherence to these rulesets in a contemporary cohort of FDA-approved drugs. AREAS COVERED The authors noted that a significant proportion of FDA-approved orally administered parent compounds from 2011 to 2022 deviate from the original Ro5 criteria (~38%) or the Ro5 with extensions (~53%). They then evaluated if a contemporary Ro5 criteria (cRo5) could be devised to better predict oral bioavailability. Furthermore, they discuss many case studies showcasing the need for and benefit of increasing the size of certain compounds and cover several evolving strategies for improving oral bioavailability. EXPERT OPINION Despite many revisions to the Ro5, the authors find that no single proposed physiochemical rule has universal concordance with absolute oral bioavailability. Innovations in drug delivery and formulation have dramatically expanded the range of physicochemical properties and the chemical diversity for oral administration.
Collapse
Affiliation(s)
- Tanner C Reese
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Anvita Devineni
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Tristan Smith
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Ismail Lalami
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
6
|
Taldaev A, Pankov DI, Terekhov RP, Zhevlakova AK, Selivanova IA. Modification of the Physicochemical Properties of Active Pharmaceutical Ingredients via Lyophilization. Pharmaceutics 2023; 15:2607. [PMID: 38004585 PMCID: PMC10674228 DOI: 10.3390/pharmaceutics15112607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bioavailability is an important biopharmaceutical characteristic of active pharmaceutical ingredients (APIs) that is often correlated with their solubility in water. One of the methods of increasing solubility is freeze drying (lyophilization). The article provides a systematic review of studies published from 2012 to 2022 aimed at optimizing the properties of active pharmaceutical ingredients by freeze drying. This review was carried out in accordance with the recommendations of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). In general, 141 modifications of 36 APIs attributed to 12 pharmacological groups were reported in selected publications. To characterize the products of phase modification after lyophilization, a complex of analytical methods was used, including microscopic, thermal, X-ray, and spectral approaches. Solubility and pharmacokinetic parameters were assessed. There is a tendency to increase solubility due to the amorphization of APIs during lyophilization. Thus, the alcohol lyophilizate of dihydroquercetin is "soluble" in water compared to the initial substance belonging to the category "very poorly soluble". Based on the analysis of the literature, it can be argued that lyophilization is a promising method for optimizing the properties of APIs.
Collapse
Affiliation(s)
- Amir Taldaev
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, 141701 Moscow, Russia
| | - Denis I. Pankov
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Roman P. Terekhov
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Anastasia K. Zhevlakova
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Irina A. Selivanova
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
7
|
Hu Q, Fu XL, Dong YY, Ma J, Hua J, Li JT, Liu KX, Yang J, Yu CX. D-Optimal Design and Development of a Koumine-Loaded Microemulsion for Rheumatoid Arthritis Treatment: In vivo and in vitro Evaluation. Int J Nanomedicine 2023; 18:2973-2988. [PMID: 37304972 PMCID: PMC10255651 DOI: 10.2147/ijn.s406641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Koumine (KME) is the most abundant active ingredient separated from Gelsemium elegans Benth and exhibits a significant therapeutic effect on rheumatoid arthritis (RA). It is a lipophilic compound with poor aqueous solubility, and there is an urgent need to develop novel dosage forms of KME and promote its clinical application for the treatment of RA. The aim of this study was to design and develop KME-loaded microemulsions (KME-MEs) for the effective management of RA. Methods The composition of the microemulsion was selected by carrying out a solubility study and generating pseudoternary phase diagrams, and further optimized by D-Optimal design. The optimized KME-MEs was evaluated for particle size, viscosity, drug release, storage stability, cytotoxicity, cellular uptake, Caco-2 cell transport and everted gut sac investigations. In vivo fluorescence imaging and the therapeutic effects of KME and KME-MEs on collagen-induced arthritis (CIA) rats were also evaluated. Results The optimized microemulsion contained 8% oil, 32% Smix (surfactant/cosurfactant) and 60% water and was used for in vivo and in vitro studies. The optimal KME-MEs exhibited a small globule size of 18.5 ± 0.14 nm and good stability over 3 months, and the release kinetics followed a first-order model. These KME-MEs had no toxic effect on Caco-2 cells but were efficiently internalized into the cytoplasm. Compared to KME, the KME-MEs displayed significantly increased permeability and absorption in Caco-2 cell monolayer assay and ex vivo everted gut sac experiment. As expected, the KME-MEs attenuated the progression of RA in CIA rats and were more effective than free KME with a reduced frequency of administration. Conclusion The KME-MEs improved the solubility and therapeutic efficacy of KME by employing formulation technology. These results provide a promising vehicle for the oral delivery of KME to treat RA and have attractive potential for clinical translation.
Collapse
Affiliation(s)
- Qing Hu
- School of Pharmacy, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Xiao-Ling Fu
- School of Pharmacy, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yi-Yan Dong
- School of Pharmacy, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Ju Ma
- School of Pharmacy, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jian Hua
- School of Pharmacy, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jia-Ting Li
- School of Pharmacy, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Kai-Xin Liu
- School of Pharmacy, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jian Yang
- School of Pharmacy, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Chang-Xi Yu
- School of Pharmacy, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
8
|
Lu Y, Yang L, Zhang W, Xie S, Zhao F, Peng X, Qin Z, Zeng D, Zeng Z. Enhancement of the oral bioavailability of isopropoxy benzene guanidine though complexation with hydroxypropyl-β-cyclodextrin. Drug Deliv 2022; 29:2824-2830. [PMID: 36062487 PMCID: PMC9448396 DOI: 10.1080/10717544.2022.2118400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Isopropoxy benzene guanidine (IBG) is a novel substituted benzene guanidine analogue with antibacterial activity against multidrug-resistant bacteria. However, the bioavailability of IBG is not optimal due to its finite aqueous solubility, thus hampering its potential therapeutic exploitation. In this study, we prepared IBG/hydroxypropyl-β-CD (IBG/HP-β-CD) complex, and characterized it by differential scanning calorimetry, Fourier transform infrared spectroscopy, powder X-ray diffraction, and scanning electron microscopy. Physicochemical characterization indicated that the crystal morphology of IBG transformed into an amorphous state, thus forming IBG/HP-β-CD inclusion complexes. Complexation with HP-β-CD significantly improve the aqueous solubility, pharmaceutical properties, absorption, and bioavailability of IBG.
Collapse
Affiliation(s)
- Yixing Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Liuye Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wanying Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shiting Xie
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Feifei Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xianfeng Peng
- Guangzhou Insighter Biotechnology Co., Ltd, Guangzhou, China
| | - Zonghua Qin
- Guangzhou Insighter Biotechnology Co., Ltd, Guangzhou, China
| | - Dongping Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
9
|
Wang Q, Wang D, Zuo Z, Ye B, Dong Z, Zou J. Effects of Dietary Koumine on Growth Performance, Intestinal Morphology, Microbiota, and Intestinal Transcriptional Responses of Cyprinus carpio. Int J Mol Sci 2022; 23:ijms231911860. [PMID: 36233179 PMCID: PMC9570066 DOI: 10.3390/ijms231911860] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Gelsemium elegans Benth. (GEB) is a traditional medicinal plant in China, and acts as a growth promoter in pigs and goats. Koumine (KM) is the most abundant alkaloid in GEB and produces analgesic, anti-cancer, and immunomodulatory effects. KM can be used as an aquatic immune stimulant, but its growth-promoting effects and transcriptional mechanisms have not been investigated. Diets containing KM at 0, 0.2, 2, and 20 mg/kg were fed to Cyprinus carpio for 71 days to investigate its effects on growth performance, intestinal morphology, microflora, biochemical indicators, and transcriptional mechanisms. Cyprinus carpio fed with KM as the growth promoter, and the number of intestinal crypts and intestinal microbial populations were influenced by KM concentration. KM increased the abundance of colonies of Afipia, Phyllobacterium, Mesorhizobium, and Labrys, which were associated with compound decomposition and proliferation, and decreased the abundance of colonies of pathogenic bacteria Methylobacterium-Methylorubrum. A total of 376 differentially-expressed genes (DEGs) among the four experimental groups were enriched for transforming growth factor-β1 and small mother against decapentaplegic (TGF-β1/Smad), mitogen-activated protein kinase (MAPK), and janus kinases and signal transducers and activators of transcription (Jak/Stat) signaling pathways. In particular, tgfbr1, acvr1l, rreb-1, stat5b, smad4, cbp, and c-fos were up-regulated and positively correlated with KM dose. KM had a growth-promoting effect that was related to cell proliferation driven by the TGF-β1/Smad, MAPK, and Jak/Stat signaling pathways. KM at 0.2 mg/kg optimized the growth performance of C. carpio, while higher concentrations of KM (2 and 20 mg/kg) may induce apoptosis without significantly damaging the fish intestinal structure. Therefore, KM at low concentration has great potential for development as an aquatic growth promotion additive.
Collapse
Affiliation(s)
- Qiujie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dongjie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhiheng Zuo
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Bin Ye
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Correspondence: (Z.D.); (J.Z.); Tel.: +86-0510-85551424 (Z.D.); +86-020-87571321 (J.Z.)
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.D.); (J.Z.); Tel.: +86-0510-85551424 (Z.D.); +86-020-87571321 (J.Z.)
| |
Collapse
|
10
|
Heikal LA, El-Kamel AH, Mehanna RA, Khalifa HM, Hassaan PS. Improved oral nutraceutical-based intervention for the management of obesity: pterostilbene-loaded chitosan nanoparticles. Nanomedicine (Lond) 2022; 17:1055-1075. [PMID: 36066036 DOI: 10.2217/nnm-2022-0158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To formulate and assess the oral anti-obesity effect of polymeric-based pterostilbene (PS)-loaded nanoparticles. Methods: Pterostilbene-hydroxypropyl β-cyclodextrin inclusion complex loaded in chitosan nanoparticles (PS/HPβCD-NPs) were prepared and characterized in vitro. Cytotoxicity, pharmacokinetics and anti-obesity effects were assessed on Caco-2 cell line and high-fat-diet-induced obesity rat model, respectively. In vivo assessment included histological examination, protein and gene expression of obesity biomarkers in adipose tissues. Results: Safe PS/HPβCD-NPs were successfully prepared with improved bioavailability compared with free PS. PS/HPβCD-NPs showed an improved anti-obesity effect, as supported by histological examination, lipid profile, UCP1 gene expression and protein expression of SIRT1, COX2, IL-6 and leptin. Conclusion: Orally administered PS nanoparticles represent a new and promising anti-obesity strategy owing to the sustainable weight loss and minimal side effects; this may be of great socio-economic impact.
Collapse
Affiliation(s)
- Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, El-Khartoum square, Azarita, Postal code: 21521, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, El-Khartoum square, Azarita, Postal code: 21521, Alexandria, Egypt
| | - Radwa A Mehanna
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Centre of Excellence for Research in Regenerative Medicine and its Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hoda M Khalifa
- Department of Histology & Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Passainte S Hassaan
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Stability, Antioxidant Activity and Intestinal Permeation of Oleuropein Inclusion Complexes with Beta-Cyclodextrin and Hydroxypropyl-Beta-Cyclodextrin. Molecules 2022; 27:molecules27165077. [PMID: 36014317 PMCID: PMC9412325 DOI: 10.3390/molecules27165077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Compared to beta-cyclodextrins (beta-CD), hydroxypropyl-beta-cyclodextrins (HP-beta-CD) are a more popular material used to prepare inclusion complexes due to their superior solubility and intestinal absorption. In this study, oleuropein (OL) inclusion complexes with beta-CD (beta-CD:OL) and HP-beta-CD (HP-beta-CD:OL) were prepared and the formation of inclusion complexes was validated by IR, PXRD, and DSC. A phase solubility test showed that the lgK (25 °C) and binding energy of beta-CD:OL and HP-beta-CD:OL was 2.32 versus 1.98, and −6.1 versus −24.66 KJ/mol, respectively. Beta-CD:OL exhibited a more powerful effect than HP-beta-CD:OL in protecting OL from degradation upon exposure to light, high temperature and high humidity. Molecular docking, peak intensity of carbonyls in IR, and ferric reducing power revealed that beta-CD:OL formed more hydrogen bonds with the unstable groups of OL. Both inclusion complexes significantly enhanced the solubility, intestinal permeation and antioxidant activity of OL (p < 0.05). Though HP-beta-CD:OL had higher solubility and intestinal absorption over beta-CD:OL, the difference was not significant (p > 0.05). The study implies that lower binding energy is not always associated with the higher stability of a complex. Beta-CD can protect a multiple-hydroxyl compound more efficiently than HP-beta-CD with the intestinal permeation comparable to HP-beta-CD complex.
Collapse
|
12
|
Design and Evaluation of Orally Dispersible Tablets Containing Amlodipine Inclusion Complexes in Hydroxypropyl-β-cyclodextrin and Methyl-β-cyclodextrin. MATERIALS 2022; 15:ma15155217. [PMID: 35955152 PMCID: PMC9369640 DOI: 10.3390/ma15155217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 12/24/2022]
Abstract
The development of new orally dispersible tablets containing amlodipine (AML) inclusion complexes in hydroxypropyl-β-cyclodextrin (HP-β-CD) and in methyl-β-cyclodextrin (Me-β-CD) was studied. The methods of obtaining amlodipine and the physical and chemical properties of the inclusion complexes using the two cyclodextrins was investigated separately. Solid inclusion complexes were obtained by three methods: kneading, coprecipitation, and lyophilization, at a molar ratio of 1:1. For comparison, a physical mixture in the same molar ratio was prepared. The aim of the complexation process was to improve the drug solubility. As the lyophilization method leads to a complete inclusion of the drug in the guest molecule cavity, for both used cyclodextrins, these types of compounds were selected as active ingredients for the design of orally dispersible tablets. Subsequently, the formulation of the orodispersible tablets containing AML-HP-β-CD and AML-Me-β-CD inclusion complexes and quality parameters of the final formulation were evaluated. The results prove that F1 and F4 formulations, based on silicified microcrystalline cellulose, which contains insignificant proportions of very small or very large particles, had the lowest moisture degree (3.52% for F1 and 4.03% for F4). All of these demonstrate their porous structure, which led to good flowability and compressibility performances. F1 and F4 formulations were found to be better to manufacture orally dispersible tablets.
Collapse
|