1
|
Aparicio-Blanco J, López-Torres II, Alonso-Berenguel M, Torres-Suárez AI, Martín-Sabroso C. Local antimicrobial delivery systems for prophylaxis and treatment of periprosthetic traumatological infections. Eur J Pharm Sci 2024; 204:106940. [PMID: 39504811 DOI: 10.1016/j.ejps.2024.106940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Infections associated with implants are the most serious complications in joint replacement surgeries and can jeopardize the functionality of orthopedic implants. Local antimicrobial delivery could enable antibiotics to attain concentrations above the minimum inhibitory concentration (MIC) threshold at the joint replacement site while preventing systemic side effects. Therefore, there is a dire need for the development of improved biomaterial-based delivery systems for local antibiotic administration in prosthetic infections. In this context, this review highlights the latest breakthroughs in the design of biomaterial-based formulations intended for the prophylaxis and treatment of prosthetic infections. Delivery systems for distinct forms of administration (i.e., direct intra-articular administration, loading into bone cements, coating of implant surfaces, or loading into hydrogels) are here comprehensively compiled with a focus on the design of microparticles and nanosystems for local antimicrobial administration and their impact on distinct in vitro and in vivo models of implant infections.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, 28040, Madrid, Spain; Institute of Industrial Pharmacy, Complutense University Madrid, 28040, Madrid, Spain
| | - Irene I López-Torres
- Department of Orthopaedic Surgery and Traumatology, Hospital Universitario Fundación Jiménez Díaz, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Av. De los Reyes Católicos, 2, 28040, Madrid, Spain
| | - María Alonso-Berenguel
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, 28040, Madrid, Spain
| | - Ana I Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, 28040, Madrid, Spain; Institute of Industrial Pharmacy, Complutense University Madrid, 28040, Madrid, Spain.
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, 28040, Madrid, Spain; Institute of Industrial Pharmacy, Complutense University Madrid, 28040, Madrid, Spain.
| |
Collapse
|
2
|
Shen J, Hu C, Wang Y, Tan Y, Gao X, Zhang N, Lv J, Sun J. The SRC/NF-κB-AKT/NOS3 axis as a key mediator of Kaempferol's protective effects against oxidative stress-induced osteoclastogenesis. Immun Inflamm Dis 2024; 12:e70045. [PMID: 39422344 PMCID: PMC11488077 DOI: 10.1002/iid3.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Osteoclasts are integral to the advancement of osteoporosis (OP), and their generation under conditions of oxidative stress (OS) involves various pathways. However, the specific mechanism through which the natural antioxidant kaempferol (KAE) mitigates the influence of OS on osteoclasts remains somewhat uncertain. This study aims to evaluate the effect of KAE on osteoclast formation under OS and explore its possible mechanism. METHODS Zebrafish were used to observe the effects of KAE on OP and OS. OP and OS "double disease targets" network pharmacology were used to predict the action target and mechanism of KAE on OP under OS. The effects of KAE on osteoclast differentiation induced by OS were evaluated using RWA264.7 cells induced by LPS. To elucidate the potential mechanism, we detected the expression of related factors and target genes during induction. RESULTS The presence of KAE exhibited potential in improving the conditions of OP and OS in zebrafish. KAE can reduce the OS of RAW 264.7 cells stimulated by LPS, inhibit the formation of osteoclasts, and change the level of related factors of OS, and reduce the increase of TRAP. The utilization of network pharmacology and target gene expression assay revealed that KAE exerted a down-regulatory effect on the expression of proto-oncogene tyrosine protein kinase (SRC), nuclear factor kappa-B (NF-κB), Serine/Threonine Kinase-1 (AKT1), Nitric Oxide Synthase 3 (NOS3) and Matrix Metallopeptidase-2 (MMP2). CONCLUSION Based on the results of this study, KAE may effectively mitigate OS and impede the formation of osteoclasts through the SRC/NF-κB-AKT/NOS3 axis.
Collapse
Affiliation(s)
- Jiaming Shen
- Jilin Ginseng AcademyChangchun University of Chinese MedicineChangchunChina
| | - Chunjie Hu
- Affiliated HospitalChangchun University of Chinese MedicineChangchunChina
| | - Yuelong Wang
- Jilin Ginseng AcademyChangchun University of Chinese MedicineChangchunChina
| | - Yiying Tan
- Jilin Ginseng AcademyChangchun University of Chinese MedicineChangchunChina
| | - Xiaochen Gao
- Jilin Ginseng AcademyChangchun University of Chinese MedicineChangchunChina
| | - Nanxi Zhang
- Jilin Ginseng AcademyChangchun University of Chinese MedicineChangchunChina
| | - Jingwei Lv
- Jilin Ginseng AcademyChangchun University of Chinese MedicineChangchunChina
| | - Jiaming Sun
- Jilin Ginseng AcademyChangchun University of Chinese MedicineChangchunChina
| |
Collapse
|
3
|
Dong J, Zhou X, Li Q, Zheng R, Chen J, Liu Y, Tong X, Wan Z, Gong T. The Advances in Phospholipids-Based Phase Separation Gels for the Sustained Release of Peptides, Proteins, and Chemotherapeutics. Pharmaceutics 2024; 16:875. [PMID: 39065572 PMCID: PMC11279848 DOI: 10.3390/pharmaceutics16070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Implantable drug delivery systems formed upon injection offer a host of advantages, including localized drug administration, sustained release, minimized side effects, and enhanced patient compliance. Among the various techniques utilized for the development of in situ forming drug implants, solvent-induced phase inversion emerges as a particularly promising approach. However, synthetic polymer-based implants have been associated with undesirable effects arising from polymer degradation. In response to this challenge, a novel category of drug delivery systems, known as phospholipids-based phase separation gels (PPSGs), has emerged. These gels, characterized by their low initial viscosity, exhibit injectability and undergo rapid transformation into in situ implants when exposed to an aqueous environment. A typical PPSG formulation comprises biodegradable components, such as phospholipids, pharmaceutical oil, and a minimal amount of ethanol. The minimized organic solvents in the composition show good biocompatibility. And the relatively simple composition holds promise for industrial-scale manufacturing. This comprehensive review provides an overview of the principles and advancements in PPSG systems, with specific emphasis on their suitability as drug delivery systems for a wide range of active pharmaceutical ingredients (APIs), spanning from small molecules to peptides and proteins. Additionally, we explore the critical parameters and underlying principles governing the formulation of PPSG-based drug delivery strategies, offering valuable insights on optimization strategies.
Collapse
Affiliation(s)
- Jianxia Dong
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China; (J.D.); (Q.L.)
| | - Xueru Zhou
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China;
| | - Qing Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China; (J.D.); (Q.L.)
| | - Ruohui Zheng
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (R.Z.); (J.C.); (X.T.)
| | - Jing Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (R.Z.); (J.C.); (X.T.)
| | - Yuzhe Liu
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Xin Tong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (R.Z.); (J.C.); (X.T.)
| | - Zhuoya Wan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (R.Z.); (J.C.); (X.T.)
| | - Tao Gong
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
4
|
Alissa M, Hjazi A, Abusalim GS, Aloraini GS, Alghamdi SA, Alharthi NS, Rizg WY, Hosny KM, Binmadi N. Utilization of nanotechnology and experimental design in the development and optimization of a posaconazole‒calendula oil nanoemulgel for the treatment of mouth disorders. Front Pharmacol 2024; 15:1347551. [PMID: 38434704 PMCID: PMC10905964 DOI: 10.3389/fphar.2024.1347551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction: Essential oil‒based nanoemulsions (NEs) are the subjects of extensive investigation due to their potential to address a variety of oral health issues. NEs are delivery systems that improve lipid medicine solubility and distribution to intended sites. The goal of the current study was to create and enhance a self-nanoemulsifying drug delivery paradigm based on calendula oil (CO) and decorated with chitosan (CS) that could deliver posaconazole (PSZ) for the treatment of gingivitis. Method: Employing a response-surface Box‒Behnken design, PSZ-CO-CS NEs were created with varying amounts of PSZ (10, 15, and 20 mg), percentages of CO (6%, 12%, and 18%), and percentages of CS (0.5%, 1.5%, and 2.5%). Results and conclusion: The optimized formulation resulted in a 22-mm bacterial growth suppression zone, 25-mm fungal growth inhibition zone, droplet sizes of 110 nm, and a viscosity of 750 centipoise (cP). Using the appropriate design, the ideal formulation was produced; it contained 20 mg of PSZ, 18% of CO, and 1.35% of CS. Furthermore, the optimal formulation had a more controlled drug release, larger inhibition zones of bacterial and fungal growth, and desirable rheologic properties. Additionally, the optimized formulation substantially lowered the ulcer index in rats when tested against other formulations. Thus, this investigation showed that PSZ-CO-CS NEs could provide efficient protection against microbially induced gingivitis.
Collapse
Affiliation(s)
- Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ghadah S. Abusalim
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ghfren S. Aloraini
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Suad A. Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nahed S. Alharthi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nada Binmadi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Toksoy MO, Aşır F, Güzel MC. Quality by design approach for development and characterization of gabapentin-loaded solid lipid nanoparticles for intranasal delivery: In vitro, ex vivo, and histopathological evaluation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:904-913. [PMID: 38800014 PMCID: PMC11127077 DOI: 10.22038/ijbms.2024.76281.16511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/15/2024] [Indexed: 05/29/2024]
Abstract
Objectives "Quality by Design" (QbD) is a novel approach to product development that involves understanding the product and process, as well as the relationship between critical quality attributes (CQA) and critical process parameters (CPP). This study aimed to optimize the gabapentin-loaded solid lipid nanoparticle formulation (GP-SLN) using a QbD approach and evaluate in vitro and ex vivo performance. Materials and Methods The GP-SLN formulation was created using the microemulsion method by combining Gelucire 48/16, Tween 80, and Plurol Oleique CC 497. The Box-Behnken experimental design was adopted to investigate the effects of independent factors on dependent factors. The GP-SLN formulation was assessed based on particle size and distribution, zeta potential, morphology, entrapment efficiency, release kinetics, permeation parameters, stability, and nasal toxicity. Results The nanoparticles had a cubical shape with a particle size of 185.3±45.6 nm, a zeta potential of -24±3.53 mV, and an entrapment efficiency of 82.57±4.02%. The particle size and zeta potential of the GP-SLNs remained consistent for 3 months and followed Weibull kinetics with a significantly higher ex vivo permeability (1.7 fold) than a gabapentin solution (GP-SOL). Histopathology studies showed that intranasal administration of the GP-SLN formulation had no harmful effects. Conclusion The current study reports the successful development of a GP-SLN formulation using QbD. A sustained release of GP was achieved and its nasal permeability was increased. Solid lipid nanoparticles with optimum particle size and high entrapment efficiency may offer a promising approach for the intranasal delivery of drugs.
Collapse
Affiliation(s)
- Mahmut Ozan Toksoy
- Department of Pharmaceutical Technology, Dicle University, Diyarbakır, Turkey
| | - Fırat Aşır
- Department of Histology and Embryology, Dicle University, Diyarbakır, Turkey
| | - Mert Can Güzel
- Department of Pharmaceutical Technology, Ege University, İzmir, Turkey
| |
Collapse
|