1
|
Liu X, Zhang Y, Peng F, Li C, Wang Q, Wang Z, Hu L, Peng X, Zhao G, Lin J. Macrophage Membrane-Coated Nanoparticles for the Delivery of Natamycin Exhibit Increased Antifungal and Anti-Inflammatory Activities in Fungal Keratitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59777-59788. [PMID: 39467057 DOI: 10.1021/acsami.4c11366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
This study aims to explore the efficacy and safety of macrophage membrane-coated nanoparticles for the delivery of natamycin (NAT) in the therapy of fungal keratitis (FK). Macrophage membranes were isolated and identified by immunofluorescence staining (IFS). NAT was encapsulated into poly(lactic-co-glycolic acid) (PLGA). Fungal stimulated macrophage membranes (M1) or unstimulated membranes (M) were separately mixed and sonicated with PLGA nanoparticles. The biocompatible nanoparticles (PLGA-NAT, PLGA-NAT@M, and PLGA-NAT@M1) were characterized with zeta-sizer analysis, transmission electron microscopy (TEM), and Western blot. Drug encapsulation and loading efficiency and the release of NAT in the nanoparticles were detected by ultraviolet spectrophotometry. The cytotoxicity, ocular surface toxicity and irritability, and systemic safety of nanoparticles with different concentrations were assessed. In vitro, we examined the antifungal properties of the nanoparticles. The eye surface retention time, drug release, and curative effects on FK were evaluated in vitro and in vivo. IFS results showed the separation of the macrophage membrane and nucleus. The prepared nanoparticles had a typical "core-shell" structure and uniform nanometer size, and the membrane proteins were retained on the membrane allowing to exert functional effects of macrophage. The loading efficiencies of PLGA-NAT@M and PLGA-NAT@M1 were 7.6 and 6.7%, respectively. The encapsulation efficiencies of PLGA-NAT@M and PLGA-NAT@M1 were 51.2 and 41.5%, respectively. PLGA-NAT@M and PLGA-NAT@M1 could gradually release NAT and reduce the clearance of the ocular surface. Macrophage membranes enhanced the antifungal activity of PLGA-NAT. Furthermore, the membrane coated with macrophage increased the biocompatibility and decreased the corneal toxicity of nanoparticles. In vivo, PLGA-NAT@M1 significantly alleviated the severity of FK. In vitro, PLGA@M and PLGA@M1 reduced the protein levels of inflammatory cytokines after fungal stimulation. The prepared PLGA-NAT@M1 has good physical properties and biosafety. It could evade ocular surface clearance, release NAT gradually, and achieve high antifungal and anti-inflammatory efficiencies to FK. Macrophage membrane-coated nanoparticles clinically have high application potential to the treatment of FK.
Collapse
Affiliation(s)
- Xing Liu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| | - Yunfeng Zhang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| | - Fang Peng
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| | - Cui Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| | - Qian Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| | - Zhenhan Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| | - Liting Hu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| | - Xudong Peng
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| | - Guiqiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| | - Jing Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province 266003, China
| |
Collapse
|
2
|
Wu F, Zhang Z, Ma S, He Y, He Y, Ma L, Lei N, Deng W, Wang F. Microenvironment-responsive nanosystems for ischemic stroke therapy. Theranostics 2024; 14:5571-5595. [PMID: 39310102 PMCID: PMC11413776 DOI: 10.7150/thno.99822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Ischemic stroke, a common neurological disorder caused by impaired blood supply to the brain, presents a therapeutic challenge. Conventional treatments like thrombolysis and neuroprotection drugs lack ideal drug delivery systems, limiting their effectiveness. Selectively delivering therapies to the ischemic cerebral tissue holds great potential for preventing and/or treating ischemia-related pathological symptoms. The unique pathological microenvironment of the brain after ischemic stroke, characterized by hypoxia, acidity, and inflammation, offers new possibilities for targeted drug delivery. Pathological microenvironment-responsive nanosystems, extensively investigated in tumors with hypoxia-responsive systems as an example, could also respond to the ischemic cerebral microenvironment and achieve brain-targeted drug delivery and release. These emerging nanosystems are gaining traction for ischemic stroke treatment. In this review, we expound on the cerebral pathological microenvironment and clinical treatment strategies of ischemic stroke, highlight various stimulus-responsive materials employed in constructing ischemic stroke microenvironment-responsive nano delivery systems, and discuss the application of these microenvironment-responsive nanosystems in microenvironment regulation for ischemic stroke treatment.
Collapse
Affiliation(s)
- Fang Wu
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhijian Zhang
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengnan Ma
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, 450052, Henan, China
| | - Yanyan He
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuxi He
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lixia Ma
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ningjing Lei
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Deng
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fazhan Wang
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
3
|
Sharma P, Kaushik P, Kumar Sharma S, Dhankhar S, Garg N, Rani N. Exploring Microsponges in Dermatology: Opportunities and Hurdles
Ahead. MICRO AND NANOSYSTEMS 2024; 16:65-74. [DOI: 10.2174/0118764029295903240328054858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 12/01/2024]
Abstract
Abstract:
Microsponges are porous, polymeric particles that have been extensively explored in the
field of dermatology. They offer numerous advantages as a topical delivery system, including controlled
release of active ingredients, enhanced bioavailability, and improved stability. Microsponges
have been used for a wide range of dermatological applications, including the treatment of acne,
psoriasis, and other skin disorders. This review article provides an overview of the various applications
of microsponges in dermatology, along with the challenges associated with their development
and use. The article begins with a brief introduction to microsponges, the benefits of microsponges,
and their properties. It then discusses the different methods of microsponge preparation, such as
emulsion solvent evaporation and spray drying, along with their mechanism of drug release and also
applications of microsponges in dermatology, including their use in the treatment of acne, psoriasis,
and other skin disorders, are discussed in detail. Overall, microsponges have shown great promise as
a topical delivery system in dermatology, and their continued development and use will likely lead
to significant advances in the field.
Collapse
Affiliation(s)
- Prerna Sharma
- Department of Pharmaceutical Sciences, Guru Gobind Singh College of Pharmacy, Yamunanagar, India
| | - Peeyush Kaushik
- Department
of Pharmaceutics, Chandigarh Group of Colleges, Landran, Mohali, India
| | - Satish Kumar Sharma
- Glocal School of Pharmacy, The Glocal
University, Saharanpur, Uttar Pradesh, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401,
Punjab, India
- Ganpati Institute of Pharmacy, Bilaspur, 135102, Haryana, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401,
Punjab, India
- Ganpati Institute of Pharmacy, Bilaspur, 135102, Haryana, India
| | - Nidhi Rani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401,
Punjab, India
| |
Collapse
|
4
|
Liu T, Wang Y, Zhang M, Zhang J, Kang N, Zheng L, Ding Z. The Optimization Design of Macrophage Membrane Camouflaging Liposomes for Alleviating Ischemic Stroke Injury through Intranasal Delivery. Int J Mol Sci 2024; 25:2927. [PMID: 38474179 DOI: 10.3390/ijms25052927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Ischemic stroke is associated with a high mortality rate, and effective treatment strategies are currently lacking. In this study, we aimed to develop a novel nano delivery system to treat ischemic stroke via intranasal administration. A three-factor Box-Behnken experimental design was used to optimize the formulation of liposomes co-loaded with Panax notoginseng saponins (PNSs) and Ginsenoside Rg3 (Rg3) (Lip-Rg3/PNS). Macrophage membranes were coated onto the surface of the optimized liposomes to target the ischemic site of the brain. The double-loaded liposomes disguised by macrophage membranes (MM-Lip-Rg3/PNS) were spherical, in a "shell-core" structure, with encapsulation rates of 81.41% (PNS) and 93.81% (Rg3), and showed good stability. In vitro, MM-Lip-Rg3/PNS was taken up by brain endothelial cells via the clathrin-dependent endocytosis and micropinocytosis pathways. Network pharmacology experiments predicted that MM-Lip-Rg3/PNS could regulate multiple signaling pathways and treat ischemic stroke by reducing apoptosis and inflammatory responses. After 14 days of treatment with MM-Lip-Rg3/PNS, the survival rate, weight, and neurological score of middle cerebral artery occlusion (MCAO) rats significantly improved. The hematoxylin and eosin (H&E) and TUNEL staining results showed that MM-Lip-Rg3/PNS can reduce neuronal apoptosis and inflammatory cell infiltration and protect the ischemic brain. In vivo biological experiments have shown that free Rg3, PNS, and MM-Lip-Rg3/PNS can alleviate inflammation and apoptosis, especially MM-Lip-Rg3/PNS, indicating that biomimetic liposomes can improve the therapeutic effects of drugs. Overall, MM-Lip-Rg3/PNS is a potential biomimetic nano targeted formulation for ischemic stroke therapy.
Collapse
Affiliation(s)
- Tianshu Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Mengfan Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Naijin Kang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Linlin Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhiying Ding
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|