1
|
Amadeu de Oliveira F, Tokuhara CK, Veeriah V, Domezi JP, Santesso MR, Cestari TM, Ventura TMO, Matos AA, Dionísio T, Ferreira MR, Ortiz RC, Duarte MAH, Buzalaf MAR, Ponce JB, Sorgi CA, Faccioli LH, Buzalaf CP, de Oliveira RC. The Multifarious Functions of Leukotrienes in Bone Metabolism. J Bone Miner Res 2023; 38:1135-1153. [PMID: 37314430 DOI: 10.1002/jbmr.4867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
Leukotrienes (LTs) are derived from arachidonic acid metabolism by the 5-lipoxygenase (5-LO) enzyme. The production of LTs is stimulated in the pathogenesis of rheumatoid arthritis (RA), osteoarthritis, and periodontitis, with a relevant contribution to bone resorption. However, its role in bone turnover, particularly the suppression of bone formation by modulating the function of osteoclasts and osteoblasts, remains unclear. We investigated the effects of LTs on bone metabolism and their impact on osteogenic differentiation and osteoclastogenesis using a 5-LO knockout (KO) mouse model. Results from micro-computed tomography (μCT) analysis of femur from 8-week-old 5-LO-deficient mice showed increased cortical bone and medullary region in females and males and decreased trabecular bone in females. In the vertebra, we observed increased marrow area in both females and males 5-LO KO and decreased trabecular bone only in females 5-LO KO. Immunohistochemistry (IHC) analysis showed higher levels of osteogenic markers tissue-nonspecific alkaline phosphatase (TNAP) and osteopontin (OPN) and lower expression of osteoclastogenic marker tartrate-resistant acid phosphatase (TRAP) in the femurs of 5-LO KO mice versus wild-type (WT). Alkaline phosphatase activity and mineralization assay results showed that the 5-LO absence enhances osteoblasts differentiation and mineralization but decreases the proliferation. Alkaline phosphatase (ALP), Bglap, and Sp7 gene expression were higher in 5-LO KO osteoblasts compared to WT cells. Eicosanoids production was higher in 5-LO KO osteoblasts except for thromboxane 2, which was lower in 5-LO-deficient mice. Proteomic analysis identified the downregulation of proteins related to adenosine triphosphate (ATP) metabolism in 5-LO KO osteoblasts, and the upregulation of transcription factors such as the adaptor-related protein complex 1 (AP-1 complex) in long bones from 5-LO KO mice leading to an increased bone formation pattern in 5-LO-deficient mice. We observed enormous differences in the morphology and function of osteoclasts with reduced bone resorption markers and impaired osteoclasts in 5-LO KO compared to WT osteoclasts. Altogether, these results demonstrate that the absence of 5-LO is related to the greater osteogenic profile. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Flávia Amadeu de Oliveira
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Cintia K Tokuhara
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
- Human Genetics Program, Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Vimal Veeriah
- Institute for Regenerative Medicine, University of Zürich, Zürich, Switzerland
| | - João Paulo Domezi
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | - Tania M Cestari
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | - Adriana A Matos
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Thiago Dionísio
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Marcel R Ferreira
- Institute of Biosciences, São Paulo State University-UNESP, Botucatu, SP, Brazil
| | - Rafael C Ortiz
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Marco A H Duarte
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | - José B Ponce
- Department of Medicine, University Center of Adamantina, Adamantina, SP, Brazil
- Department of Medicine, Faculdades de Dracena, Dracena, SP, Brazil
| | - Carlos A Sorgi
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucia H Faccioli
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
2
|
Lorencetti-Silva F, Arnez MFM, Thomé JPDQ, de Carvalho MS, de Carvalho FK, de Queiroz AM, Faccioli LH, Paula-Silva FWG. Leukotriene B4 Loaded in Microspheres Inhibits Osteoclast Differentiation and Activation. Braz Dent J 2022; 33:35-45. [PMID: 36287497 PMCID: PMC9645171 DOI: 10.1590/0103-6440202204827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
To investigate osteoclast formation in vivo and if leukotriene B4 (LTB4) loaded in microspheres (MS) could be used as a therapeutical strategy to promote a sustained delivery of the mediator and prevent osteoclast differentiation. Methods: In vivo, apical periodontitis was induced in mice to investigate osteoclast differentiation and signaling in absence of 5-lipoxygenase (5-LO). In vitro, LTB4-MS were prepared using an oil-in-water emulsion solvent extraction-evaporation process. Characterization and efficiency of LTB4 encapsulation were investigated. J774A.1 macrophages were cultured in the presence of monocyte colony-stimulating factor (M-CSF) and ligand for receptor activator of nuclear factor kappa B (RANKL) and then stimulated with LTB4-MS. Cytotoxicity, in vitro MS-LTB4 uptake, osteoclast formation and gene expression were measured. Results: We found that 5-LO negatively regulates osteoclastic formation in vivo during apical periodontitis development. In vitro, LTB4-MS were up-taken by macrophages and were not cytotoxic to the cells. LTB4-MS inhibited osteoclast formation and the synthesis of osteoclastogenic genes Acp5, Mmp9, Calcr and Ctsk. LTB4-MS inhibited differentiation of macrophages into an osteoclastic phenotype and cell activation under M-CSF and RANKL stimulus.
Collapse
Affiliation(s)
- Francine Lorencetti-Silva
- Departamento de Clínica Infantil, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil., Universidade de Rio Verde, Rio Verde, Goiás, Brasil
| | - Maya Fernanda Manfrin Arnez
- Departamento de Clínica Infantil, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - João Pedro de Queiroz Thomé
- Departamento de Clínica Infantil, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil., Faculdade de Ciências da Saúde de Barretos Dr. Paulo Prata, Barretos, SP, Brazil
| | - Marcio Santos de Carvalho
- Departamento de Clínica Infantil, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Fabrício Kitazono de Carvalho
- Departamento de Clínica Infantil, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Alexandra Mussolino de Queiroz
- Departamento de Clínica Infantil, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Lúcia Helena Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francisco Wanderley Garcia Paula-Silva
- Departamento de Clínica Infantil, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil.,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
Age-related accumulation of advanced oxidation protein products promotes osteoclastogenesis through disruption of redox homeostasis. Cell Death Dis 2021; 12:1160. [PMID: 34907153 PMCID: PMC8671415 DOI: 10.1038/s41419-021-04441-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022]
Abstract
Enhanced osteoclastogenesis is one of the major causes of age-related bone loss. Aging is accompanied by accumulation of advanced oxidation protein products (AOPPs). However, whether AOPPs accumulation contributing to the osteoclastogenesis with aging remains unclear. Here, we showed that AOPPs accumulation was associated with the enhanced osteoclastogenesis and deterioration of bone microstructure in aged mice. In vitro, AOPPs directly induced osteoclastogenesis by interaction with receptor activator of nuclear factor κ B (RANK) and the receptor for advanced glycation end products (RAGE) in the primary bone marrow monocytes. Bindings of AOPPs to RANK and RAGE were able to activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, trigger generation of reactive oxygen species, then induce phosphorylation of mitogen-activated protein kinases and c-fos, upregulation of the nuclear factor of activated T cell c1, eventually induce bone marrow monocytes to differentiate into mature osteoclasts. Chronic exposure to AOPPs enhanced osteoclastogenesis and bone loss in mice, which could be alleviated by NADPH oxidase inhibitor apocynin. Local injection of AOPPs into subperiosteal area induced bone resorption at the site of administration, which was similar to the effect of RANK ligand. Together, these results suggested that AOPPs could serve as a novel regulator of osteoclastogenesis and AOPPs accumulation might play an important role in the development of age-related bone loss.
Collapse
|
4
|
Paula-Silva FWG, Arnez MFM, Petean IBF, Almeida-Junior LA, da Silva RAB, da Silva LAB, Faccioli LH. Effects of 5-lipoxygenase gene disruption on inflammation, osteoclastogenesis and bone resorption in polymicrobial apical periodontitis. Arch Oral Biol 2020; 112:104670. [DOI: 10.1016/j.archoralbio.2020.104670] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/23/2019] [Accepted: 01/27/2020] [Indexed: 01/18/2023]
|
5
|
Lopes DEM, Jabr CL, Dejani NN, Saraiva AC, de Aquino SG, Medeiros AI, Rossa Junior C. Inhibition of 5-lipoxygenase attenuates inflammation and BONE resorption in lipopolysaccharide-induced periodontal disease. J Periodontol 2017; 89:235-245. [PMID: 29381190 DOI: 10.1902/jop.2017.170210] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/14/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Arachidonate-5-lipoxygenase (5-LO) activity and increased leukotriene B4 (LTB4) production have been implicated in various inflammatory conditions. Increased production of leukotrienes has been associated with periodontal diseases; however, their relative contribution to tissue destruction is unknown. In this study, an orally active specific 5-LO inhibitor is used to assess its role in inflammation and bone resorption in a murine model of lipopolysaccharide (LPS)-induced periodontal disease. METHODS Periodontal disease was induced in Balb/c mice by direct injections of LPS into the palatal gingival tissues adjacent to the maxillary first molars three times per week for 4 weeks. Animals were treated with biochemical inhibitor (2 mg/kg/daily) or the same volume of the vehicle by oral gavage. Microcomputed tomography analysis was used to assess bone resorption. Enzyme immunoassay determined LTB4, and enzyme-linked immunosorbent assays quantified tumor necrosis factor (TNF), interleukin (IL)-12, and IL-10 in gingival tissues. Histologic sections were used for the morphometric analysis (number of neutrophils and mononuclear cells). Osteoclasts were counted in tartrate-resistant acid phosphatase-stained sections. RESULTS Administration of 5-LO inhibitor effectively reduced production of LTB4 (23.7% decrease) and significantly reduced TNF and IL-12 levels in gingival tissues. Moreover, reduction of LTB4 levels in gingival tissues was associated with a significant decrease in bone resorption and a marked reduction in number of osteoclasts and inflammatory cells. CONCLUSION 5-LO activity plays a relevant role in inflammation and bone resorption associated with the LPS model of experimental periodontal disease.
Collapse
Affiliation(s)
- Debora E M Lopes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, Araraquara, Sao Paulo, Brazil
| | - Camila L Jabr
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, Araraquara, Sao Paulo, Brazil
| | - Naiara N Dejani
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University
| | - Amanda C Saraiva
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University
| | - Sabrina G de Aquino
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, Araraquara, Sao Paulo, Brazil
- Health Sciences Center, School of Dentistry, Federal University of Paraiba, Joao Pessoa, Paraíba, Brazil
| | - Alexandra I Medeiros
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University
| | - Carlos Rossa Junior
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University, Araraquara, Sao Paulo, Brazil
| |
Collapse
|
6
|
Bouchareychas L, Grössinger EM, Kang M, Qiu H, Adamopoulos IE. Critical Role of LTB4/BLT1 in IL-23-Induced Synovial Inflammation and Osteoclastogenesis via NF-κB. THE JOURNAL OF IMMUNOLOGY 2016; 198:452-460. [PMID: 27895169 DOI: 10.4049/jimmunol.1601346] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/26/2016] [Indexed: 11/19/2022]
Abstract
IL-23 activates the synthesis and production of leukotriene B4 (LTB4) in myeloid cells, which modulate inflammatory arthritis. In this study we investigated the role of LTB4 and its receptor LTB4R1 (BLT1) in synovial inflammation and osteoclast differentiation. Specifically, we used IL-23 in vivo gene transfer to induce arthritis in mice and showed that elevated serum LTB4 and synovial expression of 5-lipoxygenase correlated with increased disease severity by histological evaluation and paw swelling compared with GFP gene transfer controls. To further investigate the effect of the LTB4 pathway in bone loss, we performed osteoclast differentiation assays by stimulating with M-CSF and receptor activator of NF-κB ligand bone marrow cells derived from BLT1+/+ and/or BLT1-/- mice and used quantitative PCR for gene expression analysis in terminally differentiated osteoclasts. Deficiency in BLT1 resulted in the upregulation of osteoclast-related genes and an increase in the formation of giant, multinucleated TRAP+ cells capable of F-actin ring formation. Additionally, BLT1 deficiency showed an increase of phosphorylated NF-κB and phosphorylated IκB levels in osteoclasts. We also performed real-time calcium imaging to study the effect of BLT1 deficiency in receptor activator of NF-κ-B ligand-induced activation of intracellular calcium flux in vitro. Our data show that LTB4 and its receptor BLT1 exacerbate synovial inflammation in vivo and bone resorption in vitro, suggesting that LTB4 and BLT1 could be effectively targeted for the treatment of musculoskeletal diseases.
Collapse
Affiliation(s)
- Laura Bouchareychas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616; and
| | - Eva M Grössinger
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616; and
| | - Mincheol Kang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616; and
| | - Hong Qiu
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616; and
| | - Iannis E Adamopoulos
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA 95616; and .,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817
| |
Collapse
|
7
|
Paula-Silva FWG, Petean IBF, da Silva LAB, Faccioli LH. Dual Role of 5-Lipoxygenase in Osteoclastogenesis in Bacterial-induced Apical Periodontitis. J Endod 2016; 42:447-54. [DOI: 10.1016/j.joen.2015.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/11/2015] [Accepted: 12/03/2015] [Indexed: 01/07/2023]
|
8
|
Impact of docosahexaenoic acid on gene expression during osteoclastogenesis in vitro--a comprehensive analysis. Nutrients 2013; 5:3151-62. [PMID: 23945674 PMCID: PMC3775247 DOI: 10.3390/nu5083151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/09/2013] [Accepted: 08/01/2013] [Indexed: 01/13/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs), especially n-3 polyunsaturated fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are known to protect against inflammation-induced bone loss in chronic inflammatory diseases, such as rheumatoid arthritis, periodontitis and osteoporosis. We previously reported that DHA, not EPA, inhibited osteoclastogenesis induced by the receptor activator of nuclear factor-κB ligand (sRANKL) in vitro. In this study, we performed gene expression analysis using microarrays to identify genes affected by the DHA treatment during osteoclastogenesis. DHA strongly inhibited osteoclastogenesis at the late stage. Among the genes upregulated by the sRANKL treatment, 4779 genes were downregulated by DHA and upregulated by the EPA treatment. Gene ontology analysis identified sets of genes related to cell motility, cell adhesion, cell-cell signaling and cell morphogenesis. Quantitative PCR analysis confirmed that DC-STAMP, an essential gene for the cell fusion process in osteoclastogenesis, and other osteoclast-related genes, such as Siglec-15, Tspan7 and Mst1r, were inhibited by DHA.
Collapse
|
9
|
Egusa H, Doi M, Saeki M, Fukuyasu S, Akashi Y, Yokota Y, Yatani H, Kamisaki Y. The small molecule harmine regulates NFATc1 and Id2 expression in osteoclast progenitor cells. Bone 2011; 49:264-74. [PMID: 21504804 DOI: 10.1016/j.bone.2011.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 03/29/2011] [Accepted: 04/04/2011] [Indexed: 11/30/2022]
Abstract
Small molecule compounds that potently affect osteoclastogenesis could be useful as chemical probes for elucidating the mechanisms of various biological phenomena and as effective therapeutic strategies against bone resorption. An osteoclast progenitor cell-based high-throughput screening system was designed to target activation of NFAT, which is a key event for osteoclastogenesis. Orphan ligand library screening using this system identified the β-carboline derivative harmine, which is a highly potent inhibitor of dual-specificity tyrosine-phosphorylation regulated kinase 1A (DYRK1A), to be an NFAT regulator in osteoclasts. RAW264.7 cells highly expressed DYRK1A protein, and in vitro phosphorylation assay demonstrated that harmine directly inhibited the DYRK1A-mediated phosphorylation (in-activation) of NFATc1. Harmine promoted the dephosphorylation (activation) of NFATc1 in RAW264.7 cells within 24h, and it significantly increased the expression of NFATc1 in RAW264.7 cells and mouse primary bone marrow macrophages (BMMs) both in the presence and absence of RANKL stimulation. Although harmine promoted NFATc1 expression and stimulated target genes for osteoclastogenesis, cell-cell fusion and the formation of TRAP-positive multinucleated osteoclasts from RAW264.7 cells and BMMs was significantly inhibited by harmine treatment. Meanwhile, harmine remarkably promoted the expression of inhibitor of DNA binding/differentiation-2 (Id2), which is a negative regulator for osteoclastogenesis, in RAW264.7 cells and BMMs. An Id2-null-mutant showed slightly increased osteoclast formation from BMMs, and the harmine-mediated inhibition of osteoclast formation was abolished in the BMMs of Id2-null-mutant mice. These results suggest that harmine is a potent activator of NFATc1 that interferes with the function of DYRK1A in osteoclast precursors and also up-regulates Id2 protein, which may dominantly inhibit expression pathways associated with cell-cell fusion, thereby leading to the disruption of the fusion events mediating osteoclastogenesis. The small molecule harmine is therefore expected to provide an experimental tool for investigating signaling cascades in osteoclastogenesis, especially those centered on DYRK1A-mediated NFATc1 and Id2 regulation.
Collapse
Affiliation(s)
- Hiroshi Egusa
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chen ZK, Lv HS, Jiang J. LTB4 can stimulate human osteoclast differentiation dependent of RANKL. ACTA ACUST UNITED AC 2010; 38:52-6. [PMID: 20047521 DOI: 10.3109/10731190903495785] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Our previous study showed that Leukotriene B4 can directly stimulate osteoclast differentiation independent of RANKL. In order to determine whether Leukotriene B4 could indirectly stimulate human osteoclast differentiation through increasing RANKL expression of rheumatoid arthritis fibroblast-like synoviocytes, we utilize the coculture model of rheumatoid arthritis fibroblast-like synoviocytes and monocyte, which were stimulated in the presence of 2.5 ng/ml M-CSF in the control group, 2.5 ng/ml M-CSF+10(-8)M LTB4 in the experimental group a, and 2.5 ng/ml M-CSF+10(-8)M LTB4+100 ng/ml OPG in the experimental group b. After culture for 3 weeks, the number of multinucleated TRAP staining positive osteoclast-like cells stained with TRAP was counted to evaluate the differentiation effect in each group. There was almost no osteoclast-like cell in the control group and the experimental group b. There were many osteoclast-like cells in the experimental group a. These results indicated that Leukotriene B4 is capable of inducing osteoclast differentiation by a RANKL-dependent mechanism.
Collapse
Affiliation(s)
- Zhan-kun Chen
- Arthritis Clinic & Research Center, Peking University People's Hospital, Beijing, China
| | | | | |
Collapse
|
11
|
Yuan J, Akiyama M, Nakahama KI, Sato T, Uematsu H, Morita I. The effects of polyunsaturated fatty acids and their metabolites on osteoclastogenesis in vitro. Prostaglandins Other Lipid Mediat 2010; 92:85-90. [PMID: 20394833 DOI: 10.1016/j.prostaglandins.2010.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/10/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
Abstract
Bone homeostasis is maintained by active remodeling through the balance between resorption (by osteoclasts) and synthesis (by osteoblasts). In this study, we examined the effects of polyunsaturated fatty acids (PUFAs) and their metabolites on sRANKL-induced differentiation of bone marrow-derived macrophages (BMMs) into osteoclasts in vitro. Docosahexaenoic acid (DHA) strongly inhibited osteoclastogenesis; however, dihomo-gamma-linolenic acid (DGLA), arachidonic acid (AA) and eicosapentaenoic acid (EPA) enhanced it. The enhancement effect of PUFAs on osteoclastogenesis was mediated predominantly by cyclooxygenase (COX) products, because the effect was inhibited by a COX inhibitor. It was also found that COX products of PUFAs, prostaglandin E(1), E(2), and E(3), clearly increased in osteoclastogenesis. The inhibitory effect of DHA on osteoclastogenesis was reversed by treatment with a lipoxygenase (LOX) inhibitor. Furthermore, resolvin D1, a LOX product of DHA, significantly inhibited osteoclastogenesis. Quantitative analysis of specific mRNA levels revealed that DHA-mediated attenuation of osteoclastogenesis might be due to a decrease in DC-STAMP expression. These results suggested that the effect of DHA on osteoclastogenesis is, at least in part, mediated by lipoxygenase products. This study showed a distinct mechanism of the effect of PUFAs on osteoclastogenesis and will provide evidence for therapeutic treatment with DHA in osteoporotic patients.
Collapse
Affiliation(s)
- Jizhong Yuan
- Department of Cellular Physiological Chemistry, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Baroli B. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci 2009; 98:1317-75. [PMID: 18729202 DOI: 10.1002/jps.21528] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tissue engineering is an emerging multidisciplinary field of investigation focused on the regeneration of diseased or injured tissues through the delivery of appropriate molecular and mechanical signals. Therefore, bone tissue engineering covers all the attempts to reestablish a normal physiology or to speed up healing of bone in all musculoskeletal disorders and injuries that are lashing modern societies. This article attempts to give a pharmaceutical perspective on the production of engineered man-made bone grafts that are described as implantable tissue engineering therapeutics, and to highlight the importance of understanding bone composition and structure, as well as osteogenesis and bone healing processes, to improve the design and development of such implants. In addition, special emphasis is given to pharmaceutical aspects that are frequently minimized, but that, instead, may be useful for formulation developments and in vitro/in vivo correlations.
Collapse
Affiliation(s)
- Biancamaria Baroli
- Dip. Farmaco Chimico Tecnologico, Università di Cagliari, Via Ospedale, 72, 09124 Cagliari, Italy
| |
Collapse
|
13
|
Kimoto-Nira H, Suzuki C, Kobayashi M, Sasaki K, Mizumachi K. Inhibition of leukotriene B4 production in murine macrophages by lactic acid bacteria. Int J Food Microbiol 2008; 129:321-4. [PMID: 19178973 DOI: 10.1016/j.ijfoodmicro.2008.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 12/18/2008] [Accepted: 12/20/2008] [Indexed: 10/21/2022]
Abstract
Leukotriene B(4) (LTB(4)) is a lipid mediator associated with innate immune function. LTB(4) is produced mainly by polymorphonuclear leukocytes and macrophages and plays important roles in host defense. However, LTB(4) is also associated with inflammation, and excessive production of LTB(4) can result in inflammation, allergic reactions, and carcinogenesis. Regulation of excessive LTB(4) production may therefore assist in controlling these conditions. In this study, we investigated the capacity of 7 strains of lactic acid bacteria to inhibit LTB(4) production by the murine macrophage cell line J774.1. All strains tested inhibited calcium ionophore (A23187)-stimulated LTB(4) production in macrophages, but to varying extents. Lactobacillus helveticus Bc-10 exhibited the highest level of inhibitory activity. The inhibitory activity of strain Bc-10 was sustained after heat-killing and was observed in the intracellular cell-free extract prepared from this strain. This is the first report that intact lactic acid bacteria and their isolated cellular components can directly inhibit LTB(4) production by macrophages, and provides a useful method to screen the inhibitory activity of lactic acid bacteria. This study also highlights the potential of the strain Bc-10 as a treatment option for the regulation of LTB(4) production in vivo.
Collapse
Affiliation(s)
- Hiromi Kimoto-Nira
- Functional Biomolecules Research Team, National Institute of Livestock and Grassland Science, Tsukuba, Ikenodai 2, Ibaraki 305-0901, Japan.
| | | | | | | | | |
Collapse
|
14
|
Poulsen RC, Moughan PJ, Kruger MC. Long-chain polyunsaturated fatty acids and the regulation of bone metabolism. Exp Biol Med (Maywood) 2008; 232:1275-88. [PMID: 17959840 DOI: 10.3181/0704-mr-100] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The role of prostaglandin E2 (PGE2) in the regulation of bone remodeling is well established. There is increasing evidence that various long-chain polyunsaturated fatty acids (LCPUFAs), as well as nonprostanoid LCPUFA metabolites, also have critical roles in regulating bone metabolism and may have therapeutic potential in the management of postmenopausal osteoporosis. Although only the 18-carbon precursors for the n-3 and n-6 LCPUFAs are deemed "dietary essential," the ability of the body to convert these precursor fatty acids into the more highly unsaturated 20- and 22-carbon LCPUFAs decreases with aging, menopause, and various lifestyle factors (e.g., smoking). Increasing dietary LCPUFA intake increases tissue and blood LCPUFA concentrations, as well as the concentrations of their metabolites. Modification of dietary LCPUFA content, particularly increasing the intake of n-3 LCPUFAs, has been shown to minimize the decline in bone mass caused by menopause in women and ovariectomy in animal models. This review summarizes findings from both in vivo and in vitro studies and outlines the effects of LCPUFAs and their metabolites on calcium balance, osteoblastogenesis, osteoclastogenesis, and osteoblast and osteoclast function.
Collapse
Affiliation(s)
- Raewyn C Poulsen
- Institute of Food, Nutrition and Human Health, Private Bag 11-222, Palmerston North, New Zealand.
| | | | | |
Collapse
|
15
|
Hikiji H, Takato T, Shimizu T, Ishii S. The roles of prostanoids, leukotrienes, and platelet-activating factor in bone metabolism and disease. Prog Lipid Res 2008; 47:107-26. [DOI: 10.1016/j.plipres.2007.12.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 11/29/2007] [Accepted: 12/04/2007] [Indexed: 12/11/2022]
|
16
|
Abstract
Osteoimmunology is an interdisciplinary research field combining the exciting fields of osteology and immunology. An observation that contributed enormously to the emergence of osteoimmunology was the accelerated bone loss caused by inflammatory diseases such as rheumatoid arthritis. Receptor activator of nuclear factor kappaB ligand (RANKL), which is the main regulator of osteoclastogenesis, was found to be the primary culprit responsible for the enhanced activation of osteoclasts: activated T cells directly and indirectly increased the expression of RANKL, and thereby promoted osteoclastic activity. Excessive bone loss is not only present in inflammatory diseases but also in autoimmune diseases and cancer. Furthermore, there is accumulating evidence that the very prevalent skeletal disorder osteoporosis is associated with alterations in the immune system. Meanwhile, numerous connections have been discovered in osteoimmunology beyond merely the actions of RANKL. These include the importance of osteoblasts in the maintenance of the hematopoietic stem cell niche and in lymphocyte development as well as the functions of immune cells participating in osteoblast and osteoclast development. Furthermore, research is being done investigating cytokines, chemokines, transcription factors and co-stimulatory molecules which are shared by both systems. Research in osteoimmunology promises the discovery of new strategies and the development of innovative therapeutics to cure or alleviate bone loss in inflammatory and autoimmune diseases as well as in osteoporosis. This review gives an introduction to bone remodeling and the cells governing that process and summarizes the most recent discoveries in the interdisciplinary field of osteoimmunology. Furthermore, an alternative large animal model will be discussed and the pathophysiological alterations of the immune system in osteoporosis will be highlighted.
Collapse
Affiliation(s)
- Martina Rauner
- Ludwig Boltzmann Institute of Aging Research, Vienna, Austria
| | | | | |
Collapse
|
17
|
Werz O, Steinhilber D. Therapeutic options for 5-lipoxygenase inhibitors. Pharmacol Ther 2006; 112:701-18. [PMID: 16837050 DOI: 10.1016/j.pharmthera.2006.05.009] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 05/26/2006] [Indexed: 12/27/2022]
Abstract
5-Lipoxygenase (5-LO) catalyzes the conversion of arachidonic acid (AA) into leukotriene (LT) A(4) and 5-hydroperoxyeicosatetraenoic acid. LTA(4) can then be converted into LTB(4) by LTA(4) hydrolase or into LTC(4) by LTC(4) synthase and the LTC(4) synthase isoenzymes MGST2 and MGST3. LTB(4) is a potent chemoattractant for neutrophils, eosinophils and monocytes leading to adherence of phagocytes to vessel walls, neutrophil degranulation and release of superoxide anions. LTC(4) and its metabolite, LTD(4), are potent bronchoconstrictors that increase vascular permeability and stimulate mucus secretion from airways. Recent data also suggest that LT have an immunomodulatory role. Due to these properties, the increased biosynthesis of LT in asthma, and based upon clinical data obtained with CysLT(1) receptor antagonists in asthma patients, there is a consensus that CysLT play a prominent role in asthma. In this review, we summarize the knowledge on possible functions of the 5-LO pathway in various diseases like asthma, cancer and cardiovascular events and review the corresponding potential therapeutic roles of 5-LO inhibitors.
Collapse
Affiliation(s)
- Oliver Werz
- Pharmaceutical Institute, University of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| | | |
Collapse
|