1
|
Zhao F, Balthazaar S, Hiremath SV, Nightingale TE, Panza GS. Enhancing Spinal Cord Injury Care: Using Wearable Technologies for Physical Activity, Sleep, and Cardiovascular Health. Arch Phys Med Rehabil 2024; 105:1997-2007. [PMID: 38972475 DOI: 10.1016/j.apmr.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Wearable devices have the potential to advance health care by enabling real-time monitoring of biobehavioral data and facilitating the management of an individual's health conditions. Individuals living with spinal cord injury (SCI) have impaired motor function, which results in deconditioning and worsening cardiovascular health outcomes. Wearable devices may promote physical activity and allow the monitoring of secondary complications associated with SCI, potentially improving motor function, sleep, and cardiovascular health. However, several challenges remain to optimize the application of wearable technologies within this population. One is striking a balance between research-grade and consumer-grade devices in terms of cost, accessibility, and validity. Additionally, limited literature supports the validity and use of wearable technology in monitoring cardio-autonomic and sleep outcomes for individuals with SCI. Future directions include conducting performance evaluations of wearable devices to precisely capture the additional variation in movement and physiological parameters seen in those with SCI. Moreover, efforts to make the devices small, lightweight, and inexpensive for consumer ease of use may affect those with severe motor impairments. Overcoming these challenges holds the potential for wearable devices to help individuals living with SCI receive timely feedback to manage their health conditions and help clinicians gather comprehensive patient health information to aid in diagnosis and treatment.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI; John D. Dingell VA Medical Center, Research and Development, Detroit, MI
| | - Shane Balthazaar
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada; Department of Cardiology, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Shivayogi V Hiremath
- Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, PA
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.
| | - Gino S Panza
- Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI; John D. Dingell VA Medical Center, Research and Development, Detroit, MI.
| |
Collapse
|
2
|
Balthazaar SJT, Nightingale TE, Currie KD, West CR, Tsang TSM, Walter M, Krassioukov AV. Temporal Changes of Cardiac Structure, Function, and Mechanics During Sub-acute Cervical and Thoracolumbar Spinal Cord Injury in Humans: A Case-Series. Front Cardiovasc Med 2022; 9:881741. [PMID: 35783818 PMCID: PMC9240304 DOI: 10.3389/fcvm.2022.881741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Individuals with cervical spinal cord injury (SCI) experience deleterious changes in cardiac structure and function. However, knowledge on when cardiac alterations occur and whether this is dependent upon neurological level of injury remains to be determined. Transthoracic echocardiography was used to assess left ventricular structure, function, and mechanics in 10 male individuals (median age 34 years, lower and upper quartiles 32–50) with cervical (n = 5, c-SCI) or thoracolumbar (n = 5, tl-SCI) motor-complete SCI at 3- and 6-months post-injury. Compared to the 3-month assessment, individuals with c-SCI displayed structural, functional, and mechanical changes during the 6-month assessment, including significant reductions in end diastolic volume [121 mL (104–139) vs. 101 mL (99–133), P = 0.043], stroke volume [75 mL (61–85) vs. 60 mL (58–80), P = 0.042], myocardial contractile velocity (S') [0.11 m/s (0.10–0.13) vs. 0.09 m/s (0.08–0.10), P = 0.043], and peak diastolic longitudinal strain rate [1.29°/s (1.23–1.34) vs. 1.07°/s (0.95–1.15), P = 0.043], and increased early diastolic filling over early myocardial relaxation velocity (E/E') ratio [5.64 (4.71–7.72) vs. 7.48 (6.42–8.42), P = 0.043]. These indices did not significantly change in individuals with tl-SCI between time points. Ejection fraction was different between individuals with c-SCI and tl-SCI at 3 [61% (57–63) vs. 54% (52–55), P < 0.01] and 6 months [58% (57–62) vs. 55% (52–56), P < 0.01], though values were considered normal. These results demonstrate that individuals with c-SCI exhibit significant reductions in cardiac function from 3 to 6 months post-injury, whereas individuals with tl-SCI do not, suggesting the need for early rehabilitation to minimize cardiac consequences in this specific population.
Collapse
Affiliation(s)
- Shane J. T. Balthazaar
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, Faculty of Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Tom E. Nightingale
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Trauma Science Research, University of Birmingham, Birmingham, United Kingdom
| | - Katharine D. Currie
- Department of Kinesiology, Michigan State University, East Lansing, MI, United States
| | - Christopher R. West
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, UBC, Vancouver, BC, Canada
| | - Teresa S. M. Tsang
- Department of Cardiology, Vancouver General and UBC Hospitals, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Matthias Walter
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Faculty of Medicine, UBC, Vancouver, BC, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC, Canada
- *Correspondence: Andrei V. Krassioukov
| |
Collapse
|
3
|
Fossey MPM, Balthazaar SJT, Squair JW, Williams AM, Poormasjedi-Meibod MS, Nightingale TE, Erskine E, Hayes B, Ahmadian M, Jackson GS, Hunter DV, Currie KD, Tsang TSM, Walter M, Little JP, Ramer MS, Krassioukov AV, West CR. Spinal cord injury impairs cardiac function due to impaired bulbospinal sympathetic control. Nat Commun 2022; 13:1382. [PMID: 35296681 PMCID: PMC8927412 DOI: 10.1038/s41467-022-29066-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 02/20/2022] [Indexed: 02/08/2023] Open
Abstract
Spinal cord injury chronically alters cardiac structure and function and is associated with increased odds for cardiovascular disease. Here, we investigate the cardiac consequences of spinal cord injury on the acute-to-chronic continuum, and the contribution of altered bulbospinal sympathetic control to the decline in cardiac function following spinal cord injury. By combining experimental rat models of spinal cord injury with prospective clinical studies, we demonstrate that spinal cord injury causes a rapid and sustained reduction in left ventricular contractile function that precedes structural changes. In rodents, we experimentally demonstrate that this decline in left ventricular contractile function following spinal cord injury is underpinned by interrupted bulbospinal sympathetic control. In humans, we find that activation of the sympathetic circuitry below the level of spinal cord injury causes an immediate increase in systolic function. Our findings highlight the importance for early interventions to mitigate the cardiac functional decline following spinal cord injury. By combining experimental models with prospective clinical studies, the authors show that spinal cord injury causes a rapid reduction in cardiac function that precedes structural changes, and that the loss of descending sympathetic control is the major cause of reduced cardiac function following spinal cord injury.
Collapse
Affiliation(s)
- Mary P M Fossey
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shane J T Balthazaar
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jordan W Squair
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Alexandra M Williams
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Tom E Nightingale
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.,Centre for Trauma Sciences Research, University of Birmingham, Edgabaston, Birmingham, UK
| | - Erin Erskine
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Brian Hayes
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Mehdi Ahmadian
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, BC, Canada
| | - Garett S Jackson
- Faculty of Health and Social Development, University of British Columbia, Kelowna, BC, Canada
| | - Diana V Hunter
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Katharine D Currie
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Teresa S M Tsang
- Division of Cardiology, University of British Columbia, Vancouver General and University of British Columbia Hospital Echocardiography Department, Vancouver, BC, Canada
| | - Matthias Walter
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Matt S Ramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada. .,Experimental Medicine, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada. .,Division of Physical Medicine and Rehabilitation, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada. .,GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC, Canada.
| | - Christopher R West
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada. .,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|