1
|
Schüß C, Behr V, Beck-Sickinger AG. Illuminating the neuropeptide Y 4 receptor and its ligand pancreatic polypeptide from a structural, functional, and therapeutic perspective. Neuropeptides 2024; 105:102416. [PMID: 38430725 DOI: 10.1016/j.npep.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The neuropeptide Y4 receptor (Y4R), a rhodopsin-like G protein-coupled receptor (GPCR) and the hormone pancreatic polypeptide (PP) are members of the neuropeptide Y family consisting of four receptors (Y1R, Y2R, Y4R, Y5R) and three highly homologous peptide ligands (neuropeptide Y, peptide YY, PP). In this family, the Y4R is of particular interest as it is the only subtype with high affinity to PP over NPY. The Y4R, as a mediator of PP signaling, has a pivotal role in appetite regulation and energy homeostasis, offering potential avenues for the treatment of metabolic disorders such as obesity. PP as anorexigenic peptide is released postprandial from the pancreas in response to food intake, induces satiety signals and contributes to hamper excessive food intake. Moreover, this system was also described to be associated with different types of cancer: overexpression of Y4R have been found in human adenocarcinoma cells, while elevated levels of PP are related to the development of pancreatic endocrine tumors. The pharmacological relevance of the Y4R advanced the search for potent and selective ligands for this receptor subtype, which will be significantly progressed through the elucidation of the active state PP-Y4R cryo-EM structure. This review summarizes the development of novel PP-derived ligands, like Obinepitide as dual Y2R/Y4R agonist in clinical trials or UR-AK86c as small hexapeptide agonist with picomolar affinity, as well as the first allosteric modulators that selectively target the Y4R, e.g. VU0506013 as potent Y4R positive allosteric modulator or (S)-VU0637120 as allosteric antagonist. Here, we provide valuable insights into the complex physiological functions of the Y4R and PP and the pharmacological relevance of the system in appetite regulation to open up new avenues for the development of tool compounds for targeted therapies with potential applications in metabolic disorders.
Collapse
Affiliation(s)
- Corinna Schüß
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Germany.
| | - Victoria Behr
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Germany
| | | |
Collapse
|
2
|
Gleixner J, Kopanchuk S, Grätz L, Tahk MJ, Laasfeld T, Veikšina S, Höring C, Gattor AO, Humphrys LJ, Müller C, Archipowa N, Köckenberger J, Heinrich MR, Kutta RJ, Rinken A, Keller M. Illuminating Neuropeptide Y Y 4 Receptor Binding: Fluorescent Cyclic Peptides with Subnanomolar Binding Affinity as Novel Molecular Tools. ACS Pharmacol Transl Sci 2024; 7:1142-1168. [PMID: 38633582 PMCID: PMC11019746 DOI: 10.1021/acsptsci.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
The neuropeptide Y (NPY) Y4 receptor (Y4R), a member of the family of NPY receptors, is physiologically activated by the linear 36-amino acid peptide pancreatic polypeptide (PP). The Y4R is involved in the regulation of various biological processes, most importantly pancreatic secretion, gastrointestinal motility, and regulation of food intake. So far, Y4R binding affinities have been mostly studied in radiochemical binding assays. Except for a few fluorescently labeled PP derivatives, fluorescence-tagged Y4R ligands with high affinity have not been reported. Here, we introduce differently fluorescence-labeled (Sulfo-Cy5, Cy3B, Py-1, Py-5) Y4R ligands derived from recently reported cyclic hexapeptides showing picomolar Y4R binding affinity. With pKi values of 9.22-9.71 (radioligand competition binding assay), all fluorescent ligands (16-19) showed excellent Y4R affinity. Y4R saturation binding, binding kinetics, and competition binding with reference ligands were studied using different fluorescence-based methods: flow cytometry (Sulfo-Cy5, Cy3B, and Py-1 label), fluorescence anisotropy (Cy3B label), and NanoBRET (Cy3B label) binding assays. These experiments confirmed the high binding affinity to Y4R (equilibrium pKd: 9.02-9.9) and proved the applicability of the probes for fluorescence-based Y4R competition binding studies and imaging techniques such as single-receptor molecule tracking.
Collapse
Affiliation(s)
- Jakob Gleixner
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Sergei Kopanchuk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Lukas Grätz
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Maris-Johanna Tahk
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Santa Veikšina
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Carina Höring
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Albert O. Gattor
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Laura J. Humphrys
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Christoph Müller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Nataliya Archipowa
- Institute
of Biophysics and Physical Biochemistry, Faculty of Biology and Preclinical
Medicine, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| | - Johannes Köckenberger
- Department
of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Markus R. Heinrich
- Department
of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Roger Jan Kutta
- Institute
of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ago Rinken
- Institute
of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Max Keller
- Institute
of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany
| |
Collapse
|
3
|
Gleixner J, Gattor AO, Humphrys LJ, Brunner T, Keller M. [ 3H]UR-JG102-A Radiolabeled Cyclic Peptide with High Affinity and Excellent Selectivity for the Neuropeptide Y Y 4 Receptor. J Med Chem 2023; 66:13788-13808. [PMID: 37773891 DOI: 10.1021/acs.jmedchem.3c01224] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The family of human neuropeptide Y receptors (YRs) comprises four subtypes (Y1R, Y2R, Y4R, and Y5R) that are involved in the regulation of numerous physiological processes. Until now, Y4R binding studies have been predominantly performed in hypotonic sodium-free buffers using 125I-labeled derivatives of the endogenous YR agonists pancreatic polypeptide or peptide YY. A few tritium-labeled Y4R ligands have been reported; however, when used in buffers containing sodium at a physiological concentration, their Y4R affinities are insufficient. Based on the cyclic hexapeptide UR-AK86C, we developed a new tritium-labeled Y4R radioligand ([3H]UR-JG102, [3H]20). In sodium-free buffer, [3H]20 exhibits a very low Y4R dissociation constant (Kd 0.012 nM). In sodium-containing buffer (137 mM Na+), the Y4R affinity is lower (Kd 0.11 nM) but still considerably higher compared to previously reported tritiated Y4R ligands. Therefore, [3H]20 represents a useful tool compound for the determination of Y4R binding affinities under physiological-like conditions.
Collapse
Affiliation(s)
- Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Albert O Gattor
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Laura J Humphrys
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Thomas Brunner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
4
|
Plut E, Calderón JC, Stanojlović V, Gattor AO, Höring C, Humphrys LJ, Konieczny A, Kerres S, Schubert M, Keller M, Cabrele C, Clark T, Reiser O. Stereochemistry-Driven Interactions of α,γ-Peptide Ligands with the Neuropeptide Y Y 4-Receptor. J Med Chem 2023. [PMID: 37440703 DOI: 10.1021/acs.jmedchem.3c00363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The G-protein-coupled Y4-receptor (Y4R) and its endogenous ligand, pancreatic polypeptide (PP), suppress appetite in response to food intake and, thus, are attractive drug targets for body-weight control. The C-terminus of human PP (hPP), T32-R33-P34-R35-Y36-NH2, penetrates deep into the binding pocket with its tyrosine-amide and di-arginine motif. Here, we present two C-terminally amidated α,γ-hexapeptides (1a/b) with sequence Ac-R31-γ-CBAA32-R33-L34-R35-Y36-NH2, where γ-CBAA is the (1R,2S,3R)-configured 2-(aminomethyl)-3-phenylcyclobutanecarboxyl moiety (1a) or its mirror image (1b). Both peptides bind the Y4R (Ki of 1a/b: 0.66/12 nM) and act as partial agonists (intrinsic activity of 1a/b: 50/39%). Their induced-fit binding poses in the Y4R pocket are unique and build ligand-receptor contacts distinct from those of the C-terminus of the endogenous ligand hPP. We conclude that energetically favorable interactions, although they do not match those of the native ligand hPP, still guarantee high binding affinity (with 1a rivaling hPP) but not the maximum receptor activation.
Collapse
Affiliation(s)
- Eva Plut
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Jacqueline C Calderón
- Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Vesna Stanojlović
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Albert O Gattor
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Carina Höring
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Laura J Humphrys
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Adam Konieczny
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Sabine Kerres
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Mario Schubert
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Chiara Cabrele
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Oliver Reiser
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
5
|
PET Imaging of the Neuropeptide Y System: A Systematic Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123726. [PMID: 35744852 PMCID: PMC9227365 DOI: 10.3390/molecules27123726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022]
Abstract
Neuropeptide Y (NPY) is a vastly studied biological peptide with numerous physiological functions that activate the NPY receptor family (Y1, Y2, Y4 and Y5). Moreover, these receptors are correlated with the pathophysiology of several diseases such as feeding disorders, anxiety, metabolic diseases, neurodegenerative diseases, some types of cancers and others. In order to deepen the knowledge of NPY receptors' functions and molecular mechanisms, neuroimaging techniques such as positron emission tomography (PET) have been used. The development of new radiotracers for the different NPY receptors and their subsequent PET studies have led to significant insights into molecular mechanisms involving NPY receptors. This article provides a systematic review of the imaging biomarkers that have been developed as PET tracers in order to study the NPY receptor family.
Collapse
|
6
|
Müller C, Gleixner J, Tahk MJ, Kopanchuk S, Laasfeld T, Weinhart M, Schollmeyer D, Betschart MU, Lüdeke S, Koch P, Rinken A, Keller M. Structure-Based Design of High-Affinity Fluorescent Probes for the Neuropeptide Y Y 1 Receptor. J Med Chem 2022; 65:4832-4853. [PMID: 35263541 DOI: 10.1021/acs.jmedchem.1c02033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The recent crystallization of the neuropeptide Y Y1 receptor (Y1R) in complex with the argininamide-type Y1R selective antagonist UR-MK299 (2) opened up a new approach toward structure-based design of nonpeptidic Y1R ligands. We designed novel fluorescent probes showing excellent Y1R selectivity and, in contrast to previously described fluorescent Y1R ligands, considerably higher (∼100-fold) binding affinity. This was achieved through the attachment of different fluorescent dyes to the diphenylacetyl moiety in 2 via an amine-functionalized linker. The fluorescent ligands exhibited picomolar Y1R binding affinities (pKi values of 9.36-9.95) and proved to be Y1R antagonists, as validated in a Fura-2 calcium assay. The versatile applicability of the probes as tool compounds was demonstrated by flow cytometry- and fluorescence anisotropy-based Y1R binding studies (saturation and competition binding and association and dissociation kinetics) as well as by widefield and total internal reflection fluorescence (TIRF) microscopy of live tumor cells, revealing that fluorescence was mainly localized at the plasma membrane.
Collapse
Affiliation(s)
- Christoph Müller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Maris-Johanna Tahk
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Sergei Kopanchuk
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tõnis Laasfeld
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Michael Weinhart
- Institute of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes-Gutenberg-University Mainz, Düsbergweg 10-14, 55099 Mainz, Germany
| | - Martin U Betschart
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Steffen Lüdeke
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Pierre Koch
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Ago Rinken
- Institute of Chemistry, Faculty of Bioorganic Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Konieczny A, Conrad M, Ertl FJ, Gleixner J, Gattor AO, Grätz L, Schmidt MF, Neu E, Horn AHC, Wifling D, Gmeiner P, Clark T, Sticht H, Keller M. N-Terminus to Arginine Side-Chain Cyclization of Linear Peptidic Neuropeptide Y Y 4 Receptor Ligands Results in Picomolar Binding Constants. J Med Chem 2021; 64:16746-16769. [PMID: 34748345 DOI: 10.1021/acs.jmedchem.1c01574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The family of neuropeptide Y (NPY) receptors comprises four subtypes (Y1R, Y2R, Y4R, Y5R), which are addressed by at least three endogenous peptides, i.e., NPY, peptide YY, and pancreatic polypeptide (PP), the latter showing a preference for Y4R. A series of cyclic oligopeptidic Y4R ligands were prepared by applying a novel approach, i.e., N-terminus to arginine side-chain cyclization. Most peptides acted as Y4R partial agonists, showing up to 60-fold higher Y4R affinity compared to the linear precursor peptides. Two cyclic hexapeptides (18, 24) showed higher Y4R potency (Ca2+ aequorin assay) and, with pKi values >10, also higher Y4R affinity compared to human pancreatic polypeptide (hPP). Compounds such as 18 and 24, exhibiting considerably lower molecular weight and considerably more pronounced Y4R selectivity than PP and previously described dimeric peptidic ligands with high Y4R affinity, represent promising leads for the preparation of labeled tool compounds and might support the development of drug-like Y4R ligands.
Collapse
Affiliation(s)
- Adam Konieczny
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Marcus Conrad
- Institute of Biochemistry, Emil-Fischer-Center, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstraße 17, D-91054 Erlangen, Germany
| | - Fabian J Ertl
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Albert O Gattor
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Lukas Grätz
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Maximilian F Schmidt
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Eduard Neu
- Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich-Alexander-University Erlangen-Nürnberg, Nägelsbachstraße 25, D-91052 Erlangen, Germany
| | - Anselm H C Horn
- Institute of Biochemistry, Emil-Fischer-Center, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstraße 17, D-91054 Erlangen, Germany
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany.,Department of Chemistry and Pharmacy, Computer-Chemistry-Center, Friedrich-Alexander-University Erlangen-Nürnberg, Nägelsbachstraße 25, D-91052 Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Emil-Fischer-Center, Friedrich-Alexander-University Erlangen-Nürnberg, Fahrstraße 17, D-91054 Erlangen, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
8
|
Schüß C, Vu O, Schubert M, Du Y, Mishra NM, Tough IR, Stichel J, Weaver CD, Emmitte KA, Cox HM, Meiler J, Beck-Sickinger AG. Highly Selective Y 4 Receptor Antagonist Binds in an Allosteric Binding Pocket. J Med Chem 2021; 64:2801-2814. [PMID: 33595306 DOI: 10.1021/acs.jmedchem.0c02000] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human neuropeptide Y receptors (Y1R, Y2R, Y4R, and Y5R) belong to the superfamily of G protein-coupled receptors and play an important role in the regulation of food intake and energy metabolism. We identified and characterized the first selective Y4R allosteric antagonist (S)-VU0637120, an important step toward validating Y receptors as therapeutic targets for metabolic diseases. To obtain insight into the antagonistic mechanism of (S)-VU0637120, we conducted a variety of in vitro, ex vivo, and in silico studies. These studies revealed that (S)-VU0637120 selectively inhibits native Y4R function and binds in an allosteric site located below the binding pocket of the endogenous ligand pancreatic polypeptide in the core of the Y4R transmembrane domains. Taken together, our studies provide a first-of-its-kind tool for probing Y4R function and improve the general understanding of allosteric modulation, ultimately contributing to the rational development of allosteric modulators for peptide-activated G protein-coupled receptors (GPCRs).
Collapse
Affiliation(s)
- Corinna Schüß
- Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Oanh Vu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Mario Schubert
- Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Nigam M Mishra
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Iain R Tough
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, London SE1 1UL, U.K
| | - Jan Stichel
- Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - C David Weaver
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States.,Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kyle A Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Helen M Cox
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, London SE1 1UL, U.K
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States.,Institute for Drug Discovery, Leipzig University, Leipzig 04103, Germany
| | | |
Collapse
|
9
|
Konieczny A, Braun D, Wifling D, Bernhardt G, Keller M. Oligopeptides as Neuropeptide Y Y4 Receptor Ligands: Identification of a High-Affinity Tetrapeptide Agonist and a Hexapeptide Antagonist. J Med Chem 2020; 63:8198-8215. [DOI: 10.1021/acs.jmedchem.0c00426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adam Konieczny
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Diana Braun
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| |
Collapse
|
10
|
Lachmann D, Konieczny A, Keller M, König B. Photochromic peptidic NPY Y4 receptor ligands. Org Biomol Chem 2019; 17:2467-2478. [DOI: 10.1039/c8ob03221a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Photoresponsive NPY Y4R ligands, containing an azobenzene, azopyrazole, diethienylethene or a fulgimide chromophore were prepared to explore structural requirements of Y4R agonists on Y4R binding.
Collapse
Affiliation(s)
- D. Lachmann
- University of Regensburg
- Faculty of Chemistry and Pharmacy
- Institute of Organic Chemistry
- 93053 Regensburg
- Germany
| | - A. Konieczny
- University of Regensburg
- Faculty of Chemistry and Pharmacy
- Institute of Pharmacy
- 93053 Regensburg
- Germany
| | - M. Keller
- University of Regensburg
- Faculty of Chemistry and Pharmacy
- Institute of Pharmacy
- 93053 Regensburg
- Germany
| | - B. König
- University of Regensburg
- Faculty of Chemistry and Pharmacy
- Institute of Organic Chemistry
- 93053 Regensburg
- Germany
| |
Collapse
|
11
|
Quirk S, Hopkins MM, Bureau H, Lusk RJ, Allen C, Hernandez R, Bain DL. Mutational Analysis of Neuropeptide Y Reveals Unusual Thermal Stability Linked to Higher-Order Self-Association. ACS OMEGA 2018; 3:2141-2154. [PMID: 29619413 PMCID: PMC5876621 DOI: 10.1021/acsomega.7b01949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Neuropeptide Y (NPY) is a 36-residue peptide, abundant in the central and peripheral nervous system. The peptide interacts with membrane-bound receptors to control processes such as food intake, vasoconstriction, and memory retention. The N-terminal polyproline sequence of NPY folds back onto a C-terminal α-helix to form a hairpin structure. The hairpin undergoes transient unfolding to allow the monomer to interact with its target membranes and receptors and to form reversible dimers in solution. Using computational, functional, and biophysical approaches, we characterized the role of two conserved tyrosines (Y20 and Y27) located within the hydrophobic core of the hairpin fold. Successive mutation of the tyrosines to more hydrophobic phenylalanines increased the thermal stability of NPY and reduced functional activity, consistent with computational studies predicting a more stable hairpin structure. However, mutant stability was high relative to wild-type: melting temperatures increased by approximately 20 °C for the single mutants (Y20F and Y27F) and by 30 °C for the double mutant (Y20F + Y27F). These findings suggested that the mutations were not just simply enhancing hairpin structure stability, but might also be driving self-association to dimer. Using analytical ultracentrifugation, we determined that the mutations indeed increased self-association, but shifted the equilibrium toward hexamer-like species. Notably, these latter species were not unique to the NPY mutants, but were found to preexist at low levels in the wild-type population. Collectively, the findings indicate that NPY self-association is more complex than previously recognized and that the ensemble of NPY quaternary states is tunable by modulating hairpin hydrophobicity.
Collapse
Affiliation(s)
- Stephen Quirk
- Archeus
Bioscience, 7094 Peachtree
Industrial Blvd., Norcross, Georgia 30071, United
States
| | - Mandi M. Hopkins
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, 12850 E Montview Blvd., Aurora, Colorado 80045, United
States
| | - Hailey Bureau
- Center
for Computational and Molecular Science and Technology, School of
Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic
Dr, Atlanta, Georgia 30332, United States
| | - Ryan J. Lusk
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, 12850 E Montview Blvd., Aurora, Colorado 80045, United
States
| | - Caley Allen
- Department
of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - Rigoberto Hernandez
- Center
for Computational and Molecular Science and Technology, School of
Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic
Dr, Atlanta, Georgia 30332, United States
- Department
of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, Maryland 21218, United States
| | - David L. Bain
- Department
of Pharmaceutical Sciences, University of
Colorado Anschutz Medical Campus, 12850 E Montview Blvd., Aurora, Colorado 80045, United
States
| |
Collapse
|
12
|
Stabilized β-Catenin Ameliorates ALPS-Like Symptoms of B6/ lpr Mice. J Immunol Res 2017; 2017:3469108. [PMID: 29250557 PMCID: PMC5700472 DOI: 10.1155/2017/3469108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/15/2017] [Indexed: 01/05/2023] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is an incurable disease mainly caused by the defect of Fas-mediated apoptosis and characterized by nonmalignant autoimmune lymphoproliferation. Stabilized β-catenin could not only potentiate Fas-mediated T cell apoptosis via upregulating the expression of Fas on activated T cells, but also potentiate T cell apoptosis via intrinsic apoptotic pathway. In the present study, we introduced β-catTg into lpr/lpr mice and aimed to explore the potential role of stabilized β-catenin (β-catTg) in the development of ALPS-like phenotypes of lpr/lpr mice. We found that the total splenocyte cells and some compositions were slightly downregulated in β-catTglpr/lpr mice, especially the CD4 and CD8 TEM cells were significantly reduced. Meanwhile, stabilized β-catenin obviously decreased the numbers of spleen TCRβ+CD4−CD8− T (DNT) cells, and the levels of some serum proinflammatory factors also were lowered in β-catTglpr/lpr mice. Beyond that, stabilized β-catenin slightly lowered the levels of the serum autoantibodies and the scores of kidney histopathology of β-catTglpr/lpr mice compared with lpr/lpr mice. Our study suggested that stabilized β-catenin ameliorated some ALPS-like symptoms of lpr/lpr mice by potentiating Fas-independent signal-mediated T cell apoptosis, which might uncover a potential novel therapeutic direction for ALPS.
Collapse
|
13
|
Kuhn K, Littmann T, Dukorn S, Tanaka M, Keller M, Ozawa T, Bernhardt G, Buschauer A. In Search of NPY Y 4R Antagonists: Incorporation of Carbamoylated Arginine, Aza-Amino Acids, or d-Amino Acids into Oligopeptides Derived from the C-Termini of the Endogenous Agonists. ACS OMEGA 2017; 2:3616-3631. [PMID: 30023699 PMCID: PMC6044894 DOI: 10.1021/acsomega.7b00451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/04/2017] [Indexed: 06/08/2023]
Abstract
The cross-linked pentapeptides (2R,7R)-diaminooctanedioyl-bis(Tyr-Arg-Leu-Arg-Tyr-amide) ((2R,7R)-BVD-74D, (2R,7R)-1) and octanedioyl-bis(Tyr-Arg-Leu-Arg-Tyr-amide) (2) as well as the pentapeptide Ac-Tyr-Arg-Leu-Arg-Tyr-amide (3) were previously described as neuropeptide Y Y4 receptor (Y4R) partial agonists. Here, we report on a series of analogues of (2R,7R)-1 and 2 in which Arg2, Leu3, or Arg4 were replaced by the respective aza-amino acids. The replacement of Arg2 in 3 with a carbamoylated arginine building block and the extension of the N-terminus by an additional arginine led to the high-affinity hexapeptide Ac-Arg-Tyr-Nω-[(4-aminobutyl)aminocarbonyl]Arg-Leu-Arg-Tyr-amide (35), which was used as a precursor for a d-amino acid scan. The target compounds were investigated for Y4R functional activity in assays with complementary readouts: aequorin Ca2+ and β-arrestin 1 or β-arrestin 2 assays. In contrast to the parent compounds, which are Y4R agonists, several ligands were able to suppress the effect elicited by the endogenous ligand pancreatic polypeptide and therefore represent a novel class of peptide Y4R antagonists.
Collapse
Affiliation(s)
- Kilian
K. Kuhn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Timo Littmann
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Stefanie Dukorn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Miho Tanaka
- Department
of Chemistry, School of Science, University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Max Keller
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Takeaki Ozawa
- Department
of Chemistry, School of Science, University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Günther Bernhardt
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| | - Armin Buschauer
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany
| |
Collapse
|
14
|
Xu X, Yu B, Cai W, Huang Z. TCF1 deficiency ameliorates autoimmune lymphoproliferative syndrome (ALPS)-like phenotypes oflpr/lprmice. Scand J Immunol 2017; 85:406-416. [DOI: 10.1111/sji.12546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
Affiliation(s)
- X. Xu
- Institute of Human Virology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou China
- Key Laboratory of Tropical Diseases Control; Ministry of Education in China; Sun Yat-sen University; Guangzhou China
| | - B. Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province; Third Affiliated Hospital of Guangzhou Medical University; Guangzhou China
| | - W. Cai
- Department of Biochemistry; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou China
| | - Z. Huang
- Institute of Human Virology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou China
- Key Laboratory of Tropical Diseases Control; Ministry of Education in China; Sun Yat-sen University; Guangzhou China
- Department of Biochemistry; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou China
| |
Collapse
|
15
|
Dukorn S, Littmann T, Keller M, Kuhn K, Cabrele C, Baumeister P, Bernhardt G, Buschauer A. Fluorescence- and Radiolabeling of [Lys4,Nle17,30]hPP Yields Molecular Tools for the NPY Y4 Receptor. Bioconjug Chem 2017; 28:1291-1304. [DOI: 10.1021/acs.bioconjchem.7b00103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Stefanie Dukorn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Timo Littmann
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Max Keller
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Kilian Kuhn
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Chiara Cabrele
- Division
of Chemistry and Bioanalytics, Department of Molecular Biology, University of Salzburg, Billrothstraße 11, 5020 Salzburg, Austria
| | - Paul Baumeister
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Armin Buschauer
- Institute
of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
16
|
Lieb S, Littmann T, Plank N, Felixberger J, Tanaka M, Schäfer T, Krief S, Elz S, Friedland K, Bernhardt G, Wegener J, Ozawa T, Buschauer A. Label-free versus conventional cellular assays: Functional investigations on the human histamine H 1 receptor. Pharmacol Res 2016; 114:13-26. [PMID: 27751876 DOI: 10.1016/j.phrs.2016.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 01/07/2023]
Abstract
A set of histamine H1 receptor (H1R) agonists and antagonists was characterized in functional assays, using dynamic mass redistribution (DMR), electric cell-substrate impedance sensing (ECIS) and various signaling pathway specific readouts (Fura-2 and aequorin calcium assays, arrestin recruitment (luciferase fragment complementation) assay, luciferase gene reporter assay). Data were gained from genetically engineered HEK293T cells and compared with reference data from GTPase assays and radioligand binding. Histamine and the other H1R agonists gave different assay-related pEC50 values, however, the order of potency was maintained. In the luciferase fragment complementation assay, the H1R preferred β-arrestin2 over β-arrestin1. The calcium and the impedimetric assay depended on Gq coupling of the H1R, as demonstrated by complete inhibition of the histamine-induced signals in the presence of the Gq inhibitor FR900359 (UBO-QIC). Whereas partial inhibition by FR900359 was observed in DMR and the gene reporter assay, pertussis toxin substantially decreased the response in DMR, but increased the luciferase signal, reflecting the contribution of both, Gq and Gi, to signaling in these assays. For antagonists, the results from DMR were essentially compatible with those from conventional readouts, whereas the impedance-based data revealed a trend towards higher pKb values. ECIS and calcium assays apparently only reflect Gq signaling, whereas DMR and gene reporter assays appear to integrate both, Gq and Gi mediated signaling. The results confirm the value of the label-free methods, DMR and ECIS, for the characterization of H1R ligands. Both noninvasive techniques are complementary to each other, but cannot fully replace reductionist signaling pathway focused assays.
Collapse
Affiliation(s)
- S Lieb
- Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - T Littmann
- Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - N Plank
- Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - J Felixberger
- Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - M Tanaka
- Department of Chemistry, School of Science, University of Tokyo, Tokyo, Japan
| | - T Schäfer
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - S Krief
- Bioprojet Biotech, 35762 Saint-Grégoire, France
| | - S Elz
- Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - K Friedland
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - G Bernhardt
- Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany
| | - J Wegener
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | - T Ozawa
- Department of Chemistry, School of Science, University of Tokyo, Tokyo, Japan
| | - A Buschauer
- Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany.
| |
Collapse
|
17
|
Kuhn KK, Ertl T, Dukorn S, Keller M, Bernhardt G, Reiser O, Buschauer A. High Affinity Agonists of the Neuropeptide Y (NPY) Y4 Receptor Derived from the C-Terminal Pentapeptide of Human Pancreatic Polypeptide (hPP): Synthesis, Stereochemical Discrimination, and Radiolabeling. J Med Chem 2016; 59:6045-58. [DOI: 10.1021/acs.jmedchem.6b00309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kilian K. Kuhn
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Thomas Ertl
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße
31, 93053 Regensburg, Germany
| | - Stefanie Dukorn
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße
31, 93053 Regensburg, Germany
| | - Armin Buschauer
- Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
18
|
Keller M, Kuhn KK, Einsiedel J, Hübner H, Biselli S, Mollereau C, Wifling D, Svobodová J, Bernhardt G, Cabrele C, Vanderheyden PML, Gmeiner P, Buschauer A. Mimicking of Arginine by Functionalized N(ω)-Carbamoylated Arginine As a New Broadly Applicable Approach to Labeled Bioactive Peptides: High Affinity Angiotensin, Neuropeptide Y, Neuropeptide FF, and Neurotensin Receptor Ligands As Examples. J Med Chem 2016; 59:1925-45. [PMID: 26824643 DOI: 10.1021/acs.jmedchem.5b01495] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Derivatization of biologically active peptides by conjugation with fluorophores or radionuclide-bearing moieties is an effective and commonly used approach to prepare molecular tools and diagnostic agents. Whereas lysine, cysteine, and N-terminal amino acids have been mostly used for peptide conjugation, we describe a new, widely applicable approach to peptide conjugation based on the nonclassical bioisosteric replacement of the guanidine group in arginine by a functionalized carbamoylguanidine moiety. Four arginine-containing peptide receptor ligands (angiotensin II, neurotensin(8-13), an analogue of the C-terminal pentapeptide of neuropeptide Y, and a neuropeptide FF analogue) were subject of this proof-of-concept study. The N(ω)-carbamoylated arginines, bearing spacers with a terminal amino group, were incorporated into the peptides by standard Fmoc solid phase peptide synthesis. The synthesized chemically stable peptide derivatives showed high receptor affinities with Ki values in the low nanomolar range, even when bulky fluorophores had been attached. Two new tritiated tracers for angiotensin and neurotensin receptors are described.
Collapse
Affiliation(s)
- Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Kilian K Kuhn
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Sabrina Biselli
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Catherine Mollereau
- Institut de Pharmacologie et Biologie Structurale, CNRS/IPBS , 205 route de Narbonne, 31077 Toulouse cedex 5, France
| | - David Wifling
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Jaroslava Svobodová
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, A-5020 Salzburg, Austria
| | - Patrick M L Vanderheyden
- Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel , Pleinlaan 2, B-1050 Brussels, Belgium
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University , Schuhstrasse 19, D-91052 Erlangen, Germany
| | - Armin Buschauer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg , Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
19
|
Keller M, Weiss S, Hutzler C, Kuhn KK, Mollereau C, Dukorn S, Schindler L, Bernhardt G, König B, Buschauer A. N(ω)-Carbamoylation of the Argininamide Moiety: An Avenue to Insurmountable NPY Y1 Receptor Antagonists and a Radiolabeled Selective High-Affinity Molecular Tool ([(3)H]UR-MK299) with Extended Residence Time. J Med Chem 2015; 58:8834-49. [PMID: 26466164 DOI: 10.1021/acs.jmedchem.5b00925] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Analogues of the argininamide-type NPY Y1 receptor (Y1R) antagonist BIBP3226, bearing carbamoyl moieties at the guanidine group, revealed subnanomolar Ki values and caused depression of the maximal response to NPY (calcium assay) by up to 90% in a concentration- and time-dependent manner, suggesting insurmountable antagonism. To gain insight into the mechanism of binding of the synthesized compounds, a tritiated antagonist, (R)-N(α)-diphenylacetyl-N(ω)-[2-([2,3-(3)H]propionylamino)ethyl]aminocarbonyl-(4-hydroxybenzyl)arginin-amide ([(3)H]UR-MK299, [(3)H]38), was prepared. [(3)H]38 revealed a dissociation constant in the picomolar range (Kd 0.044 nM, SK-N-MC cells) and very high Y1R selectivity. Apart from superior affinity, a considerably lower target off-rate (t1/2 95 min) was characteristic of [(3)H]38 compared to that of the higher homologue containing a tetramethylene instead of an ethylene spacer (t1/2 3 min, Kd 2.0 nM). Y1R binding of [(3)H]38 was fully reversible and fully displaceable by nonpeptide antagonists and the agonist pNPY. Therefore, the insurmountable antagonism observed in the functional assay has to be attributed to the extended target-residence time, a phenomenon of relevance in drug research beyond the NPY receptor field.
Collapse
Affiliation(s)
| | | | | | | | - Catherine Mollereau
- CNRS/IPBS (Institut de Pharmacologie et Biologie Structurale) , 205 route de Narbonne, 31077 Toulouse cedex 5, France
| | | | | | | | | | | |
Collapse
|
20
|
Keller M, Schindler L, Bernhardt G, Buschauer A. Toward Labeled Argininamide-Type NPY Y1Receptor Antagonists: Identification of a Favorable Propionylation Site in BIBO3304. Arch Pharm (Weinheim) 2015; 348:390-8. [DOI: 10.1002/ardp.201400427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Max Keller
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Lisa Schindler
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Günther Bernhardt
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| | - Armin Buschauer
- Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy; University of Regensburg; Regensburg Germany
| |
Collapse
|
21
|
Sridharan R, Zuber J, Connelly SM, Mathew E, Dumont ME. Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:15-33. [PMID: 24055822 PMCID: PMC3926105 DOI: 10.1016/j.bbamem.2013.09.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 11/18/2022]
Abstract
G protein coupled receptors are responsible for a wide variety of signaling responses in diverse cell types. Despite major advances in the determination of structures of this class of receptors, the underlying mechanisms by which binding of different types of ligands specifically elicits particular signaling responses remain unclear. The use of fluorescence spectroscopy can provide important information about the process of ligand binding and ligand dependent conformational changes in receptors, especially kinetic aspects of these processes that can be difficult to extract from X-ray structures. We present an overview of the extensive array of fluorescent ligands that have been used in studies of G protein coupled receptors and describe spectroscopic approaches for assaying binding and probing the environment of receptor-bound ligands with particular attention to examples involving yeast pheromone receptors. In addition, we discuss the use of fluorescence spectroscopy for detecting and characterizing conformational changes in receptors induced by the binding of ligands. Such studies have provided strong evidence for diversity of receptor conformations elicited by different ligands, consistent with the idea that GPCRs are not simple on and off switches. This diversity of states constitutes an underlying mechanistic basis for biased agonism, the observation that different stimuli can produce different responses from a single receptor. It is likely that continued technical advances will allow fluorescence spectroscopy to play an important role in continued probing of structural transitions in G protein coupled receptors. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.
Collapse
Affiliation(s)
- Rajashri Sridharan
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Jeffrey Zuber
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Sara M. Connelly
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Elizabeth Mathew
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Mark E. Dumont
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics, P.O. Box 777, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
22
|
Dimeric argininamide-type neuropeptide Y receptor antagonists: Chiral discrimination between Y1 and Y4 receptors. Bioorg Med Chem 2013; 21:6303-22. [DOI: 10.1016/j.bmc.2013.08.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 11/24/2022]
|
23
|
Berlicki L, Kaske M, Gutiérrez-Abad R, Bernhardt G, Illa O, Ortuño RM, Cabrele C, Buschauer A, Reiser O. Replacement of Thr32 and Gln34 in the C-terminal neuropeptide Y fragment 25-36 by cis-cyclobutane and cis-cyclopentane β-amino acids shifts selectivity toward the Y(4) receptor. J Med Chem 2013; 56:8422-31. [PMID: 24090364 DOI: 10.1021/jm4008505] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neuropeptide Y (NPY) and pancreatic polypeptide (PP) control central and peripheral processes by activating the G protein coupled receptors YxR (x = 1, 2, 4, 5). We present analogs of the C-terminal fragments 25-36 and 32-36 of NPY and PP containing (1R,2S)-cyclobutane (βCbu) or (1R,2S)-cyclopentane (βCpe) β-amino acids, which display exclusively Y4R affinity. In particular, [βCpe(34)]-NPY-(25-36) is a Y4R selective partial agonist (EC50 41 ± 6 nM, Emax 71%) that binds Y4R with a Ki of 10 ± 2 nM and a selectivity >100-fold relative to Y1R and Y2R and >50-fold relative to Y5R. Comparably, [Y(32), βCpe(34)]-NPY(PP)-(32-36) selectively binds and activates Y4R (EC50 94 ± 21 nM, Emax 73%). The NMR structure of [βCpe(34)]-NPY-(25-36) in dodecylphosphatidylcholine micelles shows a short helix at residues 27-32, while the C-terminal segment R(33)βCpe(34)R(35)Y(36) is extended. The biological properties of the βCbu- or βCpe-containing NPY and PP C-terminal fragments encourage the future application of these β-amino acids in the synthesis of selective Y4R ligands.
Collapse
Affiliation(s)
- Lukasz Berlicki
- Institute of Organic Chemistry, University of Regensburg , Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pedragosa-Badia X, Stichel J, Beck-Sickinger AG. Neuropeptide Y receptors: how to get subtype selectivity. Front Endocrinol (Lausanne) 2013; 4:5. [PMID: 23382728 PMCID: PMC3563083 DOI: 10.3389/fendo.2013.00005] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/09/2013] [Indexed: 11/13/2022] Open
Abstract
The neuropeptide Y (NPY) system is a multireceptor/multiligand system consisting of four receptors in humans (hY(1), hY(2), hY(4), hY(5)) and three agonists (NPY, PYY, PP) that activate these receptors with different potency. The relevance of this system in diseases like obesity or cancer, and the different role that each receptor plays influencing different biological processes makes this system suitable for the design of subtype selectivity studies. In this review we focus on the latest findings within the NPY system, we summarize recent mutagenesis studies, structure activity relationship studies, receptor chimera, and selective ligands focusing also on the binding mode of the native agonists.
Collapse
Affiliation(s)
| | | | - Annette G. Beck-Sickinger
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Universität LeipzigLeipzig, Germany
| |
Collapse
|
25
|
Pluym N, Baumeister P, Keller M, Bernhardt G, Buschauer A. [3H]UR-PLN196: A Selective Nonpeptide Radioligand and Insurmountable Antagonist for the Neuropeptide Y Y2 Receptor. ChemMedChem 2013; 8:587-93. [DOI: 10.1002/cmdc.201200566] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Indexed: 11/12/2022]
|
26
|
Pop N, Igel P, Brennauer A, Cabrele C, Bernhardt G, Seifert R, Buschauer A. Functional reconstitution of human neuropeptide Y (NPY) Y2and Y4receptors in Sf9 insect cells. J Recept Signal Transduct Res 2011; 31:271-85. [DOI: 10.3109/10799893.2011.583253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
27
|
Keller M, Bernhardt G, Buschauer A. [3H]UR-MK136: A Highly Potent and Selective Radioligand for Neuropeptide Y Y1 Receptors. ChemMedChem 2011; 6:1566-71. [DOI: 10.1002/cmdc.201100197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Indexed: 11/11/2022]
|
28
|
Pluym N, Brennauer A, Keller M, Ziemek R, Pop N, Bernhardt G, Buschauer A. Application of the Guanidine-Acylguanidine Bioisosteric Approach to Argininamide-Type NPY Y2 Receptor Antagonists. ChemMedChem 2011; 6:1727-38. [DOI: 10.1002/cmdc.201100241] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Indexed: 11/06/2022]
|
29
|
Red-fluorescent argininamide-type NPY Y1 receptor antagonists as pharmacological tools. Bioorg Med Chem 2011; 19:2859-78. [DOI: 10.1016/j.bmc.2011.03.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/09/2011] [Accepted: 03/18/2011] [Indexed: 11/21/2022]
|
30
|
Keller M, Teng S, Bernhardt G, Buschauer A. Bivalent argininamide-type neuropeptide y y(1) antagonists do not support the hypothesis of receptor dimerisation. ChemMedChem 2009; 4:1733-45. [PMID: 19672917 DOI: 10.1002/cmdc.200900213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bivalent ligands are potential tools to investigate the dimerisation of G-protein-coupled receptors. Based on the (R)-argininamide BIBP 3226, a potent and selective neuropeptide Y Y(1) receptor (Y(1)R) antagonist, we prepared a series of bivalent Y(1)R ligands with a wide range of linker lengths (8-36 atoms). Exploiting the high eudismic ratio (>1000) of the parent compound, we synthesised sets of R,R-, R,S- and S,S-configured bivalent ligands to gain insight into the "bridging" of two Y(1)Rs by simultaneous interaction with both binding sites of a putative receptor dimer. Except for the S,S isomers, the bivalent ligands are high-affinity Y(1)R antagonists, as determined by Ca(2+) assays on HEL cells and radioligand competition assays on human Y(1)R-expressing SK-N-MC and MCF-7 cells. Whereas the R,R enantiomers are most potent, no marked differences were observed relative to the corresponding meso forms. The difference between R,R and R,S diastereomers was most pronounced (about sixfold) in the case of the Y(1)R antagonist containing a spacer of 20 atoms in length. Among the R,R enantiomers, linker length and structural diversity had little effect on Y(1)R affinity. Although the bivalent ligands preferentially bind to the Y(1)R, the selectivity toward human Y(2), Y(4), and Y(5) receptors was markedly lower than that of the monovalent argininamides. The results of this study neither support the presence of Y(1)R dimers nor the simultaneous occupation of both binding pockets by the twin compounds. However, as the interaction with Y(1)R dimers cannot be unequivocally ruled out, the preparation of a bivalent radioligand is suggested to determine the ligand-receptor stoichiometry. Aiming at such radiolabelled pharmacological tools, prototype twin compounds were synthesised, containing an N-propionylated amino-functionalised branched linker (K(i)> or =18 nM), a tritiated form of which can be easily prepared.
Collapse
Affiliation(s)
- Max Keller
- Lehrstuhl für Pharmazeutische/Medizinische Chemie II, Institut für Pharmazie, Universität Regensburg, Universitätsstr. 31, 93040 Regensburg (Germany)
| | | | | | | |
Collapse
|
31
|
Ghorai P, Kraus A, Keller M, Götte C, Igel P, Schneider E, Schnell D, Bernhardt G, Dove S, Zabel M, Elz S, Seifert R, Buschauer A. Acylguanidines as Bioisosteres of Guanidines: NG-Acylated Imidazolylpropylguanidines, a New Class of Histamine H2 Receptor Agonists. J Med Chem 2008; 51:7193-204. [DOI: 10.1021/jm800841w] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prasanta Ghorai
- Departments of Pharmaceutical/Medicinal Chemistry, Pharmacology and Toxicology, Center for Chemical Analysis, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Anja Kraus
- Departments of Pharmaceutical/Medicinal Chemistry, Pharmacology and Toxicology, Center for Chemical Analysis, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Max Keller
- Departments of Pharmaceutical/Medicinal Chemistry, Pharmacology and Toxicology, Center for Chemical Analysis, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Carsten Götte
- Departments of Pharmaceutical/Medicinal Chemistry, Pharmacology and Toxicology, Center for Chemical Analysis, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Patrick Igel
- Departments of Pharmaceutical/Medicinal Chemistry, Pharmacology and Toxicology, Center for Chemical Analysis, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Erich Schneider
- Departments of Pharmaceutical/Medicinal Chemistry, Pharmacology and Toxicology, Center for Chemical Analysis, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - David Schnell
- Departments of Pharmaceutical/Medicinal Chemistry, Pharmacology and Toxicology, Center for Chemical Analysis, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Günther Bernhardt
- Departments of Pharmaceutical/Medicinal Chemistry, Pharmacology and Toxicology, Center for Chemical Analysis, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Stefan Dove
- Departments of Pharmaceutical/Medicinal Chemistry, Pharmacology and Toxicology, Center for Chemical Analysis, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Manfred Zabel
- Departments of Pharmaceutical/Medicinal Chemistry, Pharmacology and Toxicology, Center for Chemical Analysis, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Sigurd Elz
- Departments of Pharmaceutical/Medicinal Chemistry, Pharmacology and Toxicology, Center for Chemical Analysis, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Roland Seifert
- Departments of Pharmaceutical/Medicinal Chemistry, Pharmacology and Toxicology, Center for Chemical Analysis, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | - Armin Buschauer
- Departments of Pharmaceutical/Medicinal Chemistry, Pharmacology and Toxicology, Center for Chemical Analysis, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| |
Collapse
|
32
|
Schneider E, Keller M, Brennauer A, Hoefelschweiger BK, Gross D, Wolfbeis OS, Bernhardt G, Buschauer A. Synthesis and characterization of the first fluorescent nonpeptide NPY Y1 receptor antagonist. Chembiochem 2008; 8:1981-8. [PMID: 17876753 DOI: 10.1002/cbic.200700302] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cyanine-5-labelled neuropeptide Y (NPY) was demonstrated to be an ideal universal fluorescent ligand for the combined investigation of NPY Y(1), Y(2) and Y(5) receptors. With respect to improved stability, detection of receptor subtypes in cells and tissues, and prevention of receptor internalization, small nonpeptidic fluorescent antagonists should be superior. Here we present a set of four fluorescent nonpeptide NPY Y(1) receptor (Y(1)R) antagonists. The highest affinity was obtained by labelling an N(G)-(6-aminohexanoyl)argininamide derived from the Y(1)R antagonist BIBP 3226, with Py-1, a small pyrylium dye. The fluorescent pyridinium-type Y(1)R antagonist, compound 4 had K(i) values of 29 nM and 2.7 nM, which were determined by radioligand binding and flow cytometry under equilibrium conditions, respectively; 4 had a K(b) value of 0.6 nM (Ca(2+) assay). The large Stoke's shift (541 vs. 615 nm) in buffer (PBS, pH 7.4) in the presence of 1% BSA and the red emission (quantum yield 56%) are advantageous with respect to the signal-to-noise ratio. The new probe was successfully used in fluorescence-based binding experiments evaluated by flow cytometry and confocal microscopy; this demonstrates the potential of pyrylium dyes for the preparation of fluorescent ligands that are applicable for the study of G protein-coupled receptors on living cells.
Collapse
Affiliation(s)
- Erich Schneider
- Institut für Pharmazie, Universität Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|