1
|
Ruggeri M, De Luca F, Ungolo A, Vigani B, Paredes AJ, Russo E, Bottone MG, Bianchi E, Ferrari F, Rossi S, Sandri G. Olive mill wastewater: From by-product to smart antioxidant material. Int J Pharm X 2024; 8:100301. [PMID: 39640079 PMCID: PMC11617292 DOI: 10.1016/j.ijpx.2024.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Olive mill wastewater (OMWW) is a byproduct of olive oil extraction that represents a critical environmental concern due to its potential adverse effects on ecosystems. Given these premises, spray-dried microparticles were designed and developed using maltodextrins as carriers to encapsulate OMWW bioactive compounds. The microparticles were manufactured using an easily scalable and sustainable spray-drying process. The resulting microparticles were smooth, spherical, and exhibited a mean particle size of about 18 μm. The systems demonstrated notable antioxidant properties with a DPPH radical scavenging activity higher than 60 %, due to the polyphenolic compounds of OMWW (about 24 g gallic acid equivalents per g of sample). In addition, the microparticles supported fibroblast and macrophage viability at concentrations up to 1 mg/mL. They also determined a 4-fold inflammation reduction in macrophages, improved collagen expression in fibroblasts, and modulated oxidative stress on aged fibroblasts. In conclusion, these microparticles could be considered as promising medical devices in wound healing, while offering a sustainable solution for valorizing OMWW.
Collapse
Affiliation(s)
- Marco Ruggeri
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Amedeo Ungolo
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Alejandro J. Paredes
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, United Kingdom
| | - Eleonora Russo
- Department of Pharmacy, University of Genoa, 16132 Genoa, Italy
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
2
|
Tavenier J, Nehlin JO, Houlind MB, Rasmussen LJ, Tchkonia T, Kirkland JL, Andersen O, Rasmussen LJH. Fisetin as a senotherapeutic agent: Evidence and perspectives for age-related diseases. Mech Ageing Dev 2024; 222:111995. [PMID: 39384074 DOI: 10.1016/j.mad.2024.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Fisetin, a flavonoid naturally occurring in plants, fruits, and vegetables, has recently gained attention for its potential role as a senotherapeutic agent for the treatment of age-related chronic diseases. Senotherapeutics target senescent cells, which accumulate with age and disease, in both circulating immune cell populations and solid organs and tissues. Senescent cells contribute to development of many chronic diseases, primarily by eliciting systemic chronic inflammation through their senescence-associated secretory phenotype. Here, we explore whether fisetin as a senotherapeutic can eliminate senescent cells, and thereby alleviate chronic diseases, by examining current evidence from in vitro studies and animal models that investigate fisetin's impact on age-related diseases, as well as from phase I/II trials in various patient populations. We discuss the application of fisetin in humans, including challenges and future directions. Our review of available data suggests that targeting senescent cells with fisetin offers a promising strategy for managing multiple chronic diseases, potentially transforming future healthcare for older and multimorbid patients. However, further studies are needed to establish the safety, pharmacokinetics, and efficacy of fisetin as a senotherapeutic, identify relevant and reliable outcome measures in human trials, optimize dosing, and better understand the possible limitations of fisetin as a senotherapeutic agent.
Collapse
Affiliation(s)
- Juliette Tavenier
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark.
| | - Jan O Nehlin
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark.
| | - Morten Baltzer Houlind
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark; The Hospital Pharmacy, Marielundsvej 25, Herlev 2730, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark.
| | - Tamara Tchkonia
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of General Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - James L Kirkland
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of General Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Ove Andersen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N 2200, Denmark; The Emergency Department, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark.
| | - Line Jee Hartmann Rasmussen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark; Department of Psychology & Neuroscience, Duke University, 2020 West Main Street Suite 201, Durham, NC 27708, USA.
| |
Collapse
|
3
|
Guo Y, Fang R, Zhen Y, Qiao D, Zhao S, Zhang B. Ion presence during thermal processing modulates the performance of rice albumin/anthocyanin binary system. Food Res Int 2024; 184:114274. [PMID: 38609251 DOI: 10.1016/j.foodres.2024.114274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Thermal processing with salt ions is widely used for the production of food products (such as whole grain food) containing protein and anthocyanin. To date, it is largely unexplored how salt ion presence during thermal processing regulates the practical performance of protein/anthocyanin binary system. Here, rice albumin (RA) and black rice anthocyanins (BRA) were used to prepare RA/BRA composite systems as a function of temperature (60-100 °C) and NaCl concentration (10-40 mM) or CaCl2 concentration (20 mM). It was revealed that the spontaneous complexing reaction between RA and BRA was driven by hydrophobic interactions and hydrogen bonds and becomes easier and more favorable at a higher temperature (≤90 °C), excessive temperature (100 °C), however, may result in the degradation of BRA. Moreover, the salt ion presence during thermal processing may bind with RA and BRA, respectively, which could restrict the interaction between BRA and RA. Additionally, the inclusion of Na+ or Ca2+ at 20 mM endowed the binary system with strengthened DPPH radical scavenging capacity (0.95 for Na+ and 0.99 for Ca2+). Notably, Ca2+ performed a greater impact on the stability of the system than Na+.
Collapse
Affiliation(s)
- Yabin Guo
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Ruolan Fang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiyuan Zhen
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Siming Zhao
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Zhang W, Zhuang S, Guan H, Li F, Zou H, Li D. New insights into the anti-apoptotic mechanism of natural polyphenols in complex with Bax protein. J Biomol Struct Dyn 2024; 42:3081-3093. [PMID: 37184126 DOI: 10.1080/07391102.2023.2212066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/01/2023] [Indexed: 05/16/2023]
Abstract
Excessive apoptosis can kill normal cells and lead to liver damage, heart failure and neurodegenerative diseases. Polyphenols are secondary metabolites of plants that can interact with proteins to inhibit toxins and disease-related apoptosis. Bax is the major pro-apoptotic protein that disrupts the outer mitochondrial membrane to induce apoptosis, but limited studies have focused on the interaction between polyphenols and Bax and the associated anti-apoptotic mechanisms, especially at the atomic level. In this article, we collected 69 common polyphenols for active ingredient screening targeting Bax. Polyphenols with better and worse molecular docking scores were selected, and their anti-apoptosis effects were compared using the H2O2-induced HepG2 cell model. The interactions between the selected polyphenols and Bax protein were analyzed using molecular dynamics simulation to explore the molecular mechanism underlying the anti-apoptosis effect. Secoisolariciresinol diglucoside (SDG) and Epigallocatechin-3-gallate (EGCG) with the best affinity for Bax (-6.76 and -6.52 kcal/mol) reduced the expression of cytochrome c and caspase 3, decreasing the apoptosis rate from 52 to 11% and 12%. Molecular dynamics simulation results showed that Bim unfolded the α1-α2 loop of Bax, and disrupted the non-bond interactions between the loop (Pro-43, Glu-44 and Leu-45) and surface (Ile-133, Arg-134 and Met-137) residues, with binding free energy changed from -15.0 to 0 kJ/mol. The hydrogen bonds and van der Waals interactions formed between polyphenols and Bax prevented the unfolding of the loop. Taken together, our results proved that polyphenols can inhibit apoptosis by maintaining the unactivated conformation of Bax to reduce outer mitochondrial membrane damage.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wenyuan Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, China
| | | | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, China
| | - Hui Zou
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, China
| | - Dapeng Li
- Qingdao Institute for Food and Drug Control, Qingdao, China
| |
Collapse
|
5
|
Boyenle ID, Ogunlana AT, Kehinde Oyedele AQ, Olokodana BK, Owolabi N, Salahudeen A, Aderenle OT, Oloyede TO, Adelusi TI. Reinstating apoptosis using putative Bcl-xL natural product inhibitors: Molecular docking and ADMETox profiling investigations. J Taibah Univ Med Sci 2022; 18:461-469. [PMID: 36818176 PMCID: PMC9906007 DOI: 10.1016/j.jtumed.2022.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/17/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022] Open
Abstract
Objectives While a fine balance in the pro-apoptotic and anti-apoptotic family members of the B-cell lymphoma-2 (Bcl-2) protein family represents a normal signaling profile, a tilt in balance towards anti-apoptotic family members has fortified different forms of cancers with survival advantage and resistance against treatment. Induction of apoptosis is a key therapeutic approach in cancer drug discovery, and the inhibition of the anti-apoptotic B cell lymphoma extra-large (Bcl-xL) is a long-standing clinical target for cancer therapy. In this study, we combined computer-aided approaches to report putative binders for this target. Methods Before our virtual screening campaign, we conducted a redocking experiment strategy of the x-ray bound inhibitor of the Bcl-xL protein with some of the available docking software at our disposal to determine the software with the best efficiency for this screening. iGEMDOCK emerged to reproduce the x-ray crystallographic information and was used to dock the library of ligand, which was developed from diverse literature reporting compounds with anti-apoptotic profiles through the Bcl-2 family. Results Of the compounds in the library, alpha-mangostin and oubain scored as hits with binding energy values of -123.025 kcal/mol and -122.271 kcal/mol, respectively, which is more than -120.8 kcal/mol observed by the standard. Conclusions These compounds revealed a more binding affinity potential than ABT-737, which is a standard inhibitor of the protein. In addition, these scaffolds not only interact with relevant and hotspot residues for the inhibition of Bcl-xL but also possess good pharmacokinetic and excellent toxicity, an endpoint that should be considered for further testing and drug development.
Collapse
Affiliation(s)
- Ibrahim Damilare Boyenle
- Department of Nursing Science, College of Health Science, Crescent University, Abeokuta, Nigeria,Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria
| | - Abdeen Tunde Ogunlana
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria
| | - Abdul-Quddus Kehinde Oyedele
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria,Biochemistry and Nutrition Department, Nigeria Institute of Medical Research, Lagos, Nigeria
| | | | - Nurudeen Owolabi
- Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria
| | - Abdulmalik Salahudeen
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | | | - Temitope Isaac Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria,Corresponding address: Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria.
| |
Collapse
|
6
|
ZHANG BY, ZHENG YF, ZHAO J, KANG D, WANG Z, XU LJ, LIU AL, DU GH. Identification of multi-target anti-cancer agents from TCM formula by in silico prediction and in vitro validation. Chin J Nat Med 2022; 20:332-351. [DOI: 10.1016/s1875-5364(22)60180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 11/03/2022]
|
7
|
Yadav M, Abdalla M, Madhavi M, Chopra I, Bhrdwaj A, Soni L, Shaheen U, Prajapati L, Sharma M, Sikarwar MS, Albogami S, Hussain T, Nayarisseri A, Singh SK. Structure-Based Virtual Screening, Molecular Docking, Molecular Dynamics Simulation and Pharmacokinetic modelling of Cyclooxygenase-2 (COX-2) inhibitor for the clinical treatment of Colorectal Cancer. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2068799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Manasi Yadav
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, PR People’s Republic of China
| | - Maddala Madhavi
- Department of Zoology, Osmania University, Hyderabad, Telangana State, India
| | - Ishita Chopra
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
- Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, Indore, Madhya Pradesh, India
| | - Anushka Bhrdwaj
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Lovely Soni
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Uzma Shaheen
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Leena Prajapati
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Megha Sharma
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | | | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Tajamul Hussain
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
- Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, Indore, Madhya Pradesh, India
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
8
|
Anaeigoudari A. Hepato- and reno-protective effects of thymoquinone, crocin, and carvacrol: A comprehensive review. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.343386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
9
|
Abdelhameed RFA, Elhady SS, Sirwi A, Samir H, Ibrahim EA, Thomford AK, El Gindy A, Hadad GM, Badr JM, Nafie MS. Thonningia sanguinea Extract: Antioxidant and Cytotoxic Activities Supported by Chemical Composition and Molecular Docking Simulations. PLANTS (BASEL, SWITZERLAND) 2021; 10:2156. [PMID: 34685963 PMCID: PMC8539418 DOI: 10.3390/plants10102156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/09/2022]
Abstract
The current study was designed to investigate the antioxidant and cytotoxic activities of Thonningia sanguinea whole-plant extract. The total phenolic content was determined using Folin-Ciocalteu reagent and found to be 980.1 mg/g, calculated as gallic acid equivalents. The antioxidant capacity was estimated for the crude extract and the phenolic portion of T. sanguinea, whereupon both revealed a dose-dependent scavenging rate of DPPH• with EC50 values of 36.33 and 11.14 µg/mL, respectively. Chemical profiling of the plant extract was achieved by LC-ESI-TOF-MS/MS analysis, where 17 compounds were assigned, including ten compounds detected in the negative mode and seven detected in the positive mode. The phenolic portion exhibited promising cytotoxic activity against MCF-7 and HepG2 cells, with IC50 values of 16.67 and 13.51 μg/mL, respectively. Phenolic extract treatment caused apoptosis in MCF-7 cells, with total apoptotic cell death 18.45-fold higher compared to untreated controls, arresting the cell cycle at G2/M by increasing the G2 population by 39.7%, compared to 19.35% for the control. The apoptotic investigation was further validated by the upregulation of proapoptotic genes of P53, Bax, and caspases-3,8 9, and the downregulation of Bcl-2 as the anti-apoptotic gene. Bcl-2 inhibition was also virtualized by good binding interactions through a molecular docking study. Taken together, phenolic extract exhibited promising cytotoxic activity in MCF-7 cells through apoptosis induction and antioxidant activation, so further fractionation studies are recommended for the phenolic extract for specifying the most active compound to be developed as a novel anti-cancer agent.
Collapse
Affiliation(s)
- Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.S.E.); (A.S.)
| | - Alaa Sirwi
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.S.E.); (A.S.)
| | - Hanan Samir
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (H.S.); (E.A.I.); (A.E.G.); (G.M.H.)
- Medical Administration, Student’s Hospital, Zagazig University, Zagazig 44519, Egypt
| | - Elsayed A. Ibrahim
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (H.S.); (E.A.I.); (A.E.G.); (G.M.H.)
| | - Ama Kyeraa Thomford
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast PMB TF0494, Ghana;
| | - Alaa El Gindy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (H.S.); (E.A.I.); (A.E.G.); (G.M.H.)
| | - Ghada M. Hadad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (H.S.); (E.A.I.); (A.E.G.); (G.M.H.)
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
10
|
Zhao L, Zhou N, Zhang H, Pan F, Ai X, Wang Y, Hao S, Wang C. Cyanidin-3-O-glucoside and its metabolite protocatechuic acid ameliorate 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induced cytotoxicity in HepG2 cells by regulating apoptotic and Nrf2/p62 pathways. Food Chem Toxicol 2021; 157:112582. [PMID: 34582963 DOI: 10.1016/j.fct.2021.112582] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 08/27/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023]
Abstract
The present study investigated the protective effects and mechanism of action of cyanidin-3-O-glucoside (C3G) and its major metabolite protocatechuic acid (PCA) against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induced cytotoxicity in HepG2 cells. The results demonstrated that C3G and PCA dose-dependently suppressed PhIP-induced mutation in Salmonella typhimurium TA98, and inhibited PhIP-induced cytotoxicity and apoptosis in HepG2 cells. Western blot analysis indicated that C3G and PCA minimized PhIP-induced cell damage by reversing the abnormal expression of Bax/Bcl-2, Cytochrome c, cleaved Caspase-3, XIAP, Nrf2, HO-1, LC3 and p62 involved in intrinsic apoptotic and Nrf2/p62 pathways. Molecular docking results revealed that C3G and PCA were able to interfere with Nrf2 signaling and apoptotic cascade through binding to Keap1 and Bcl-2. Moreover, the protective effect of C3G was stronger than that of PCA. These findings suggested that dietary consumption of food sources rich in C3G can fight against the health risks of heterocyclic aromatic amines.
Collapse
Affiliation(s)
- Lei Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Na Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Huimin Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Fei Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Xin Ai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, China
| | - Shuai Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
11
|
Delannoy López DM, Tran DT, Viault G, Dairi S, Peixoto PA, Capello Y, Minder L, Pouységu L, Génot E, Di Primo C, Deffieux D, Quideau S. Real-Time Analysis of Polyphenol-Protein Interactions by Surface Plasmon Resonance Using Surface-Bound Polyphenols. Chemistry 2021; 27:5498-5508. [PMID: 33443311 DOI: 10.1002/chem.202005187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 11/11/2022]
Abstract
A selection of bioactive polyphenols of different structural classes, such as the ellagitannins vescalagin and vescalin, the flavanoids catechin, epicatechin, epigallocatechin gallate (EGCG), and procyanidin B2, and the stilbenoids resveratrol and piceatannol, were chemically modified to bear a biotin unit for enabling their immobilization on streptavidin-coated sensor chips. These sensor chips were used to evaluate in real time by surface plasmon resonance (SPR) the interactions of three different surface-bound polyphenolic ligands per sensor chip with various protein analytes, including human DNA topoisomerase IIα, flavonoid leucoanthocyanidin dioxygenase, B-cell lymphoma 2 apoptosis regulator protein, and bovine serum albumin. The types and levels of SPR responses unveiled major differences in the association, or lack thereof, and dissociation between a given protein analyte and different polyphenolic ligands. Thus, this multi-analysis SPR technique is a valuable methodology to rapidly screen and qualitatively compare various polyphenol-protein interactions.
Collapse
Affiliation(s)
| | - Dong Tien Tran
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Guillaume Viault
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Sofiane Dairi
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | | | - Yoan Capello
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Laëtitia Minder
- INSERM, CNRS, IECB (US001, UMS 3033), Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Laurent Pouységu
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Elisabeth Génot
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Carmelo Di Primo
- INSERM, CNRS (U1212, UMR 5320), IECB, Univ. Bordeaux, 2 rue Robert Escarpit, 33607, Pessac Cedex, France
| | - Denis Deffieux
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France
| | - Stéphane Quideau
- Univ. Bordeaux, ISM (CNRS-UMR 5255), 351 cours de la Libération, 33405, Talence Cedex, France.,Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 05, France
| |
Collapse
|
12
|
Apigenin inhibits proliferation of hepatocellular carcinoma cell by upregulation of cleaved caspases-3/8 and downregulation of pSTAT-3/pJAK-1/pJAK-2. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Catalán M, Olmedo I, Faúndez J, Jara JA. Medicinal Chemistry Targeting Mitochondria: From New Vehicles and Pharmacophore Groups to Old Drugs with Mitochondrial Activity. Int J Mol Sci 2020; 21:E8684. [PMID: 33217901 PMCID: PMC7698797 DOI: 10.3390/ijms21228684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Interest in tumor cell mitochondria as a pharmacological target has been rekindled in recent years. This attention is due in part to new publications documenting heterogenous characteristics of solid tumors, including anoxic and hypoxic zones that foster cellular populations with differentiating metabolic characteristics. These populations include tumor-initiating or cancer stem cells, which have a strong capacity to adapt to reduced oxygen availability, switching rapidly between glycolysis and oxidative phosphorylation as sources of energy and metabolites. Additionally, this cell subpopulation shows high chemo- and radioresistance and a high capacity for tumor repopulation. Interestingly, it has been shown that inhibiting mitochondrial function in tumor cells affects glycolysis pathways, cell bioenergy, and cell viability. Therefore, mitochondrial inhibition may be a viable strategy for eradicating cancer stem cells. In this context, medicinal chemistry research over the last decade has synthesized and characterized "vehicles" capable of transporting novel or existing pharmacophores to mitochondrial tumor cells, based on mechanisms that exploit the physicochemical properties of the vehicles and the inherent properties of the mitochondria. The pharmacophores, some of which have been isolated from plants and others, which were synthesized in the lab, are diverse in chemical nature. Some of these molecules are active, while others are prodrugs that have been evaluated alone or linked to mitochondria-targeted agents. Finally, researchers have recently described drugs with well-proven safety and efficacy that may exert a mitochondria-specific inhibitory effect in tumor cells through noncanonical mechanisms. The effectiveness of these molecules may be improved by linking them to mitochondrial carrier molecules. These promising pharmacological agents should be evaluated alone and in combination with classic chemotherapeutic drugs in clinical studies.
Collapse
Affiliation(s)
- Mabel Catalán
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile;
| | - Ivonne Olmedo
- Physiopathology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile;
| | - Jennifer Faúndez
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Olivos 943, Santiago 8380544, Chile;
| | - José A. Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Olivos 943, Santiago 8380544, Chile;
| |
Collapse
|
14
|
Boniface PK, Elizabeth FI. Flavones as a Privileged Scaffold in Drug Discovery: Current Developments. Curr Org Synth 2020; 16:968-1001. [PMID: 31984880 DOI: 10.2174/1570179416666190719125730] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/03/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Flavones are one of the main subclasses of flavonoids with diverse pharmacological properties. They have been reported to possess antimalarial, antimicrobial, anti-tuberculosis, anti-allergic, antioxidant, anti-inflammatory activities, among others. OBJECTIVE The present review summarizes the recent information on the pharmacological properties of naturally occurring and synthetic flavones. METHODS Scientific publications referring to natural and synthetic flavones in relation to their biological activities were hand-searched in databases such as SciFinder, PubMed (National Library of Medicine), Science Direct, Wiley, ACS, SciELO, Springer, among others. RESULTS As per the literature, seventy-five natural flavones were predicted as active compounds with reference to their IC50 (<20 µg/mL) in in vitro studies. Also, synthetic flavones were found active against several diseases. CONCLUSION As per the literature, flavones are important sources for the potential treatment of multifactorial diseases. However, efforts toward the development of flavone-based therapeutic agents are still needed. The appearance of new catalysts and chemical transformations is expected to provide avenues for the synthesis of unexplored flavones, leading to the discovery of flavones with new properties and biological activities.
Collapse
Affiliation(s)
- Pone K Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira I Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Aboismaiel MG, El-Mesery M, El-Karef A, El-Shishtawy MM. Hesperetin upregulates Fas/FasL expression and potentiates the antitumor effect of 5-fluorouracil in rat model of hepatocellular carcinoma. ACTA ACUST UNITED AC 2020. [DOI: 10.1080/2314808x.2019.1707627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Merna G. Aboismaiel
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amro El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
16
|
Abd Elrazik NA, El-Mesery M, El-Karef A, Eissa LA, El Gayar AM. Chlorogenic acid potentiates antitumor effect of doxorubicin through upregulation of death receptors in solid Ehrlich carcinoma model in mice. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/2314808x.2019.1682331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Nesma A. Abd Elrazik
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amro El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Laila A. Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amal M El Gayar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
Adewole KE, Ishola AA. Phytosterols and triterpenes from Morinda lucida Benth (Rubiaceae) as potential inhibitors of anti-apoptotic BCL-XL, BCL-2, and MCL-1: an in-silico study. J Recept Signal Transduct Res 2019; 39:87-97. [DOI: 10.1080/10799893.2019.1625062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kayode Ezekiel Adewole
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences Ondo, Ondo City, Nigeria
| | - Ahmed Adebayo Ishola
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
18
|
Singh A, Somvanshi P, Grover A. Pyrazinamide drug resistance in RpsA mutant (∆438A) of Mycobacterium tuberculosis: Dynamics of essential motions and free-energy landscape analysis. J Cell Biochem 2019; 120:7386-7402. [PMID: 30390330 DOI: 10.1002/jcb.28013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/10/2018] [Indexed: 01/24/2023]
Abstract
Pyrazinamide is an essential first-line antitubercular drug which plays pivotal role in tuberculosis treatment. It is a prodrug that requires amide hydrolysis by mycobacterial pyrazinamidase enzyme for conversion into pyrazinoic acid (POA). POA is known to target ribosomal protein S1 (RpsA), aspartate decarboxylase (PanD), and some other mycobacterial proteins. Spontaneous chromosomal mutations in RpsA have been reported for phenotypic resistance against pyrazinamide. We have constructed and validated 3D models of the native and Δ438A mutant form of RpsA protein. RpsA protein variants were then docked to POA and long range molecular dynamics simulations were carried out. Per residue binding free-energy calculations, free-energy landscape analysis, and essential dynamics analysis were performed to outline the mechanism underlying the high-level PZA resistance conferred by the most frequently occurring deletion mutant of RpsA. Our study revealed the conformational modulation of POA binding site due to the disruptive collective modes of motions and increased conformational flexibility in the mutant than the native form. Residue wise MMPBSA decomposition and protein-drug interaction pattern revealed the difference of energetically favorable binding site in the wild-type (WT) protein in comparison with the mutant. Analysis of size and shape of minimal energy landscape area delineated higher stability of the WT complex than the mutant form. Our study provides mechanistic insights into pyrazinamide resistance in Δ438A RpsA mutant, and the results arising out of this study will pave way for design of novel and effective inhibitors targeting the resistant strains of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Aditi Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Department of Biotechnology, TERI School of Advanced Studies, Vasant Kunj Institutional Area, New Delhi, India
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI School of Advanced Studies, Vasant Kunj Institutional Area, New Delhi, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
19
|
Rabha A, Singh A, Grover S, Kumari A, Pandey B, Grover A. Structural basis for isoniazid resistance in KatG double mutants of Mycobacterium tuberculosis. Microb Pathog 2019; 129:152-160. [PMID: 30731190 DOI: 10.1016/j.micpath.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 01/02/2023]
Abstract
The failure of drugs for effective treatment against infectious diseases can be attributed to resistant forms of causative agents. The evasive nature of Mycobacterium tuberculosis is partly associated to its physical features, such as having a thick cell wall and incorporation of beneficial mutations leading to drug resistance. The pro drug Isoniazid (INH) interacts with an enzyme catalase peroxidase to get converted into its active form and upon activation stops the cell wall synthesis thus killing the Mycobacterium. The most common mutation i.e. S315T leads to high degree of drug resistance by virtue of its position in the active site. Here, we have characterized the prominent attributes of two double mutant isolates S315 T/D194G and S315T/M624V which are multi drug resistant and extremely drug resistant, respectively. Protein models were generated using the crystal structure which were then subjected to energy minimization and long term molecular dynamics simulations. Further, computational analysis showed decreasing ability of INH binding to the mutants in order of: Native > S315T/D194G > S315T/M624V. Also, a trend was observed that as the docking score and binding area decreased, there was a significant increase in the distortion of the 3D geometry of the mutants as observed by PCA analysis.
Collapse
Affiliation(s)
- Aneesh Rabha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aditi Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India; Department of Biotechnology, TERI School of Advanced Studies, Vasant Kunj, New Delhi, 110070, India
| | - Sonam Grover
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Anchala Kumari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India; Department of Biotechnology, TERI School of Advanced Studies, Vasant Kunj, New Delhi, 110070, India
| | - Bharati Pandey
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
20
|
Singh A, Somvanshi P, Grover A. Drug repurposing against arabinosyl transferase (EmbC) of Mycobacterium tuberculosis: Essential dynamics and free energy minima based binding mechanics analysis. Gene 2019; 693:114-126. [PMID: 30716439 DOI: 10.1016/j.gene.2019.01.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 01/10/2023]
Abstract
Arabinosyl tranferases (embA, embB, embC) are the key enzymes responsible for biogenesis of arabinan domain of arabinogalactan (AG) and lipoarabinomannan (LAM), two major heteropolysaccharide constituents of the peculiar mycobacterial cell envelope. EmbC is predominantly responsible for LAM synthesis and has been commonly associated with Ethambutol resistance. We have screened the FDA library against EmbC to reposition a drug better than Ethambutol with higher binding affinity to Embc. High throughput virtual screening followed by extra precision docking using Glide gave two best leads i.e. Terlipressin and Amikacin with docking score of -11.39 kcal/mol and -10.71 kcal/mol, respectively. Binding mechanics of the selected drugs was elucidated through long range molecular dynamics simulations (100 ns) using binding free energy rescoring, essential dynamics and free energy minima based approaches, thus revealing the most stable binding modes of Terlipressin with EmbC. Our study establishes the EmbC binding potential of the repurposed drugs Terlipressin and Amikacin.
Collapse
Affiliation(s)
- Aditi Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; Department of Biotechnology, TERI School of Advanced Studies, Plot No. 10, Vasant Kunj Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI School of Advanced Studies, Plot No. 10, Vasant Kunj Institutional Area, Vasant Kunj, New Delhi, 110070, India.
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
21
|
Fang D, Xiong Z, Xu J, Yin J, Luo R. Chemopreventive mechanisms of galangin against hepatocellular carcinoma: A review. Biomed Pharmacother 2019; 109:2054-2061. [DOI: 10.1016/j.biopha.2018.09.154] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
|
22
|
Kumar N, Singh A, Grover S, Kumari A, Kumar Dhar P, Chandra R, Grover A. HHV-5 epitope: A potential vaccine candidate with high antigenicity and large coverage. J Biomol Struct Dyn 2018; 37:2098-2109. [PMID: 30044169 DOI: 10.1080/07391102.2018.1477620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Outbreak of Human Herpes virus-5 (HHV-5) infection in emerging countries has raised worldwide health concern owing to prevalence of congenital impairments and life threatening consequences in immunocompromised individuals. Thus, there lies an impending need to develop vaccine against HHV-5. HHV-5 enters into host cells with the help of necessary components glycoprotein B (gB) and H/L. In this study, the conformational linear B-cell and T-cell epitopes for gB of HHV-5 have been predicted using conformational approaches, for their possible collective use as vaccine candidates. We examined epitope's interactions with major histocompatibility complexes using molecular docking and also investigated their stable binding with specific toll like receptor-2 (TLR2), present on host cells during HHV-5 infection. Predicted MHC-I epitope 'LVAIAVVII' with high antigenicity and large coverage of HLA alleles was found to superimpose on MHC-II epitope (Rank 1) and was also identified to be the core sequence of putative B cell epitope 'ILVAIAVVIITYLI'. Resulting epitope was found to have consistent interaction with TLR2 during long term (100 ns) MD run. We also validated this nonamer epitope for its dissimilarity with human genome and high population coverage, suggesting it to be a potential vaccine candidate with higher coverage for both the MHC alleles of Indian population. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neeraj Kumar
- a Drug Discovery and Development Laboratory, Department of Chemistry , University of Delhi , New Delhi , India
| | - Aditi Singh
- b Department of Biotechnology , TERI School of Advanced Studies , New Delhi , India.,c School of Biotechnology , Jawaharlal Nehru University , New Delhi , India
| | - Sonam Grover
- d Kusuma School of Biological Sciences , IIT Delhi , New Delhi , India
| | - Anchala Kumari
- b Department of Biotechnology , TERI School of Advanced Studies , New Delhi , India.,c School of Biotechnology , Jawaharlal Nehru University , New Delhi , India
| | - Pawan Kumar Dhar
- c School of Biotechnology , Jawaharlal Nehru University , New Delhi , India
| | - Ramesh Chandra
- a Drug Discovery and Development Laboratory, Department of Chemistry , University of Delhi , New Delhi , India
| | - Abhinav Grover
- c School of Biotechnology , Jawaharlal Nehru University , New Delhi , India
| |
Collapse
|
23
|
Zarezade V, Abolghasemi M, Rahim F, Veisi A, Behbahani M. In silico assessment of new progesterone receptor inhibitors using molecular dynamics: a new insight into breast cancer treatment. J Mol Model 2018; 24:337. [DOI: 10.1007/s00894-018-3858-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/12/2018] [Indexed: 02/06/2023]
|
24
|
Guo XB, Deng X, Wei Y. Hematopoietic Substrate-1-Associated Protein X-1 Regulates the Proliferation and Apoptosis of Endothelial Progenitor Cells Through Akt Pathway Modulation. Stem Cells 2017; 36:406-419. [PMID: 29139175 DOI: 10.1002/stem.2741] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/05/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Xin-Bin Guo
- Department of Neuro-interventional Radiology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou People's Republic of China
| | - Xin Deng
- Department of Neuro-surgery; The First Affiliated Hospital of Zhengzhou University; Zhengzhou People's Republic of China
| | - Ying Wei
- Department of Neuro-interventional Radiology; The First Affiliated Hospital of Zhengzhou University; Zhengzhou People's Republic of China
| |
Collapse
|