1
|
Yue Y, Zhou FF, Zhang JR, Xu F. Expression and significance of CEMIP and CYP11B2 in serum in women with foetal growth restriction. J OBSTET GYNAECOL 2024; 44:2389169. [PMID: 39218008 DOI: 10.1080/01443615.2024.2389169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Foetal growth restriction (FGR) occurs when a foetus fails to reach its growth potential. This observational study assessed the expression and significance of cell migration-including protein (CEMIP) and aldosterone synthase (CYP11B2) in the serum of pregnant women with FGR. METHODS 40 singleton FGR-suffered pregnant women, as well as 40 normal singleton pregnant women, were enrolled. The expression of CEMIP and CYP11B2 in serum was detected in early pregnancy. The correlations between parameters were evaluated. The predictive variables for FGR were determined. The diagnostic value of CEMIP and CYP11B2 for FGR was analysed. RESULTS CEMIP and CYP11B2 mRNA expression in the serum of pregnant women with FGR decreased (both P < 0.001). CEMIP (95%CI: 0.802-0.921, P < 0.001) and CYP11B2 (95%CI: 0.795-0.907, P < 0.001) mRNA expression in serum and soluble fms like tyrosine kinase-1 (sFLT1)/placental growth factor (PlGF) ratio (95%CI: 0.866-0.974, P < 0.001) were independent predictors of FGR, and CEMIP (r = -0.578, P = 0.001) and CYP11B2 (r = -0.602, P < 0.001) mRNA expression in serum were negatively correlated with sFLT1/PlGF ratio. CEMIP (AUC = 0.741) and CYP11B2 (AUC = 0.764) mRNA expression in serum had good diagnostic value for FGR. CONCLUSION The expression of CEMIP and CYP11B2 is reduced in the serum of pregnant women with FGR and may become new diagnostic markers for FGR.
Collapse
Affiliation(s)
- Yang Yue
- Department of Obstetrics, Longhua District Maternity and Child Health Hospital, Shenzhen City, Guangdong Province, China
| | - Fang Fang Zhou
- Department of Obstetrics, Longhua District Maternity and Child Health Hospital, Shenzhen City, Guangdong Province, China
| | - Jia Rong Zhang
- Department of Obstetrics, Longhua District Maternity and Child Health Hospital, Shenzhen City, Guangdong Province, China
| | - Fu Xu
- Department of Anesthesiology, Longhua District People's Hospital, Shenzhen City, Guangdong Province, China
| |
Collapse
|
2
|
Li X, Zhang W, Li X. CEMIP induces TGF-β/Smad signaling to promote keloid development by binding to SPARC. Clinics (Sao Paulo) 2024; 79:100523. [PMID: 39481283 DOI: 10.1016/j.clinsp.2024.100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/08/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Cell Migration Inducing Hyaluronidase 1 (CEMIP) is a protein that plays regulatory functions in a variety of cellular processes in many diseases. Nevertheless, its role and molecular mechanism in keloid hyperplasia are still elusive. METHODS Expressions of CEMIP and Secreted Protein acidic and Rich in Cysteine (SPARC) were detected by qRT-PCR and western blot. CCK-8 assay, along with immunofluorescence staining, was applied for the assessment of cell proliferation. The capabilities of cells to migrate and invade were evaluated utilizing wound healing and Transwell, while Extracellular Matrix (ECM) deposition was measured by immunofluorescence and western blot. The interaction of CEMIP and SPARC was predicted by the Coexpedia and PPA-red databases and verified by co-IP. Western blot was adopted for the estimation of TGF-β/Smad pathway-related proteins. RESULTS The data demonstrated that CEMIP expression was elevated in Keloid Fibroblasts (KF). CEMIP interference suppressed cell proliferative, migrative and invasive capabilities and ECM deposition in KF. Mechanistically, bioinformatics analysis revealed that CEMIP was co-expressed with SPARC and CEMIP protein could bind to SPARC. SPARC expression was reduced in CEMIP-silenced cells. SPARC overexpression counteracted the impacts of CEMIP silencing on cell proliferative, migrative and invasive capabilities and ECM deposition in KF. In addition, the expressions of TGF-β/Smad signaling-related proteins were decreased by CEMIP silencing via the inhibition of SPARC. CONCLUSION In summary, this study revealed that CEMIP modulated KF proliferation, migration, invasion and ECM deposition by TGF-β/Smad signaling through binding to SPARC.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Zhang
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaojing Li
- Department of Plastic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Zhou Q, Gao X, Xu H, Lu X. Non-apoptotic regulatory cell death scoring system to predict the clinical outcome and drug choices in breast cancer. Heliyon 2024; 10:e31342. [PMID: 38813233 PMCID: PMC11133894 DOI: 10.1016/j.heliyon.2024.e31342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Background Breast cancer (BC), the most common cancer among women globally, has been shown by numerous studies to significantly involve non-apoptotic regulatory cell death (RCD) in its pathogenesis and progression. Methods We obtained the RNA sequences and clinical data of BC patients from The Cancer Genome Atlas (TCGA) database for the training set, while datasets GSE96058, GSE86166, and GSE20685 from The Gene Expression Omnibus (GEO) database were utilized as validation cohorts. Initially, we performed non-negative matrix factorization (NMF) clustering analysis on the BC samples from the TCGA database to discern non-apoptotic RCD-related molecular subtypes. To identify prognostically-relevant non-apoptotic RCD genes (NRGs) and construct a prognostic model, we implemented three machine learning algorithms: lasso regression, random forest, and XGBoost analysis. The expression of selected genes was verified using real-time quantitative polymerase chain reaction (RT-qPCR), single-cell RNA-sequencing (scRNA-seq) analysis, and The Human Protein Atlas (HPA) database. The risk signature was evaluated concerning clinical characteristics and drug sensitivity. Furthermore, we developed a nomogram to predict BC patient survival. Results The NMF method successfully compartmentalized patients from the TCGA database into three distinct non-apoptotic RCD-related subtypes, with significant variations observed in immune characteristics and prognostic stratification across these subtypes. We identified 5 differentially expressed NRGs used in establishing the risk signature. Patients with different risk groups exhibited distinct clinicopathological features, drug sensitivity, and prognostic outcomes. A nomogram was subsequently developed, incorporating the NRGs-related risk signature, age, T stage, and N stage, to aid clinical decision-making. Conclusion We identified a novel NRGs-related risk signature, which was expected to become a potential prognostic marker in BC.
Collapse
Affiliation(s)
| | | | - Hui Xu
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Xuan Lu
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| |
Collapse
|
4
|
Guo S, Guo Y, Chen Y, Cui S, Zhang C, Chen D. The role of CEMIP in cancers and its transcriptional and post-transcriptional regulation. PeerJ 2024; 12:e16930. [PMID: 38390387 PMCID: PMC10883155 DOI: 10.7717/peerj.16930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
CEMIP is a protein known for inducing cell migration and binding to hyaluronic acid. Functioning as a hyaluronidase, CEMIP primarily facilitates the breakdown of the extracellular matrix component, hyaluronic acid, thereby regulating various signaling pathways. Recent evidence has highlighted the significant role of CEMIP in different cancers, associating it with diverse pathological states. While identified as a biomarker for several diseases, CEMIP's mechanism in cancer seems distinct. Accumulating data suggests that CEMIP expression is triggered by chemical modifications to itself and other influencing factors. Transcriptionally, chemical alterations to the CEMIP promoter and involvement of transcription factors such as AP-1, HIF, and NF-κB regulate CEMIP levels. Similarly, specific miRNAs have been found to post-transcriptionally regulate CEMIP. This review provides a comprehensive summary of CEMIP's role in various cancers and explores how both transcriptional and post-transcriptional mechanisms control its expression.
Collapse
Affiliation(s)
- Song Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Yunfei Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Yuanyuan Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Shuaishuai Cui
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Chunmei Zhang
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Dahu Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| |
Collapse
|
5
|
Puppo M, Valluru MK, Croset M, Ceresa D, Iuliani M, Khan A, Wicinski J, Charafe-Jauffret E, Ginestier C, Pantano F, Ottewell PD, Clézardin P. MiR-662 is associated with metastatic relapse in early-stage breast cancer and promotes metastasis by stimulating cancer cell stemness. Br J Cancer 2023; 129:754-771. [PMID: 37443350 PMCID: PMC10449914 DOI: 10.1038/s41416-023-02340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Breast cancer (BC) metastasis, which often occurs in bone, contributes substantially to mortality. MicroRNAs play a fundamental role in BC metastasis, although microRNA-regulated mechanisms driving metastasis progression remain poorly understood. METHODS MiRome analysis in serum from BC patients was performed by TaqMan™ low-density array. MiR-662 was overexpressed following MIMIC-transfection or lentivirus transduction. Animal models were used to investigate the role of miR-662 in BC (bone) metastasis. The effect of miR-662-overexpressing BC cell conditioned medium on osteoclastogenesis was investigated. ALDEFLUOR assays were performed to study BC stemness. RNA-sequencing transcriptomic analysis of miR-662-overexpressing BC cells was performed to evaluate gene expression changes. RESULTS High levels of hsa-miR-662 (miR-662) in serum from BC patients, at baseline (time of surgery), were associated with future recurrence in bone. At an early-stage of the metastatic disease, miR-662 could mask the presence of BC metastases in bone by inhibiting the differentiation of bone-resorbing osteoclasts. Nonetheless, metastatic miR-662-overexpressing BC cells then progressed as overt osteolytic metastases thanks to increased stem cell-like traits. CONCLUSIONS MiR-662 is involved in BC metastasis progression, suggesting it may be used as a prognostic marker to identify BC patients at high risk of metastasis.
Collapse
Affiliation(s)
- Margherita Puppo
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, Lyon, France.
- Univ Lyon, Université Claude Bernard Lyon 1, F-69008, Lyon, France.
| | - Manoj Kumar Valluru
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular, Medical School, University of Sheffield, Sheffield, UK
| | - Martine Croset
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, Lyon, France
- Univ Lyon, Université Claude Bernard Lyon 1, F-69008, Lyon, France
- INSERM U1052, CNRS UMR_5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Davide Ceresa
- IRCCS AOU San Martino, Università degli studi di Genova, Genova, Italy
| | - Michele Iuliani
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Roma, Italy
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128, Roma, Italy
| | - Ashrin Khan
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Julien Wicinski
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Christophe Ginestier
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Francesco Pantano
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Roma, Italy
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128, Roma, Italy
| | - Penelope Dawn Ottewell
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Philippe Clézardin
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, Lyon, France.
- Univ Lyon, Université Claude Bernard Lyon 1, F-69008, Lyon, France.
| |
Collapse
|
6
|
Liu Y, Hu G, Li Y, Kong X, Yang K, Li Z, Lao W, Li J, Zhong J, Zhang S, Leng Y, Bi C, Zhai A. Research on the biological mechanism and potential application of CEMIP. Front Immunol 2023; 14:1222425. [PMID: 37662915 PMCID: PMC10471826 DOI: 10.3389/fimmu.2023.1222425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Cell migration-inducing protein (CEMIP), also known as KIAA1199 and hyaluronan-binding protein involved in hyaluronan depolymerization, is a new member of the hyaluronidase family that degrades hyaluronic acid (HA) and remodels the extracellular matrix. In recent years, some studies have reported that CEMIP can promote the proliferation, invasion, and adhesion of various tumor cells and can play an important role in bacterial infection and arthritis. This review focuses on the pathological mechanism of CEMIP in a variety of diseases and expounds the function of CEMIP from the aspects of inhibiting cell apoptosis, promoting HA degradation, inducing inflammatory responses and related phosphorylation, adjusting cellular microenvironment, and regulating tissue fibrosis. The diagnosis and treatment strategies targeting CEMIP are also summarized. The various functions of CEMIP show its great potential application value.
Collapse
Affiliation(s)
- Yang Liu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Gang Hu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuetong Li
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinyi Kong
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kaming Yang
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhenlin Li
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wanwen Lao
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiaxin Li
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jianhua Zhong
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shitong Zhang
- Department of General Practice, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuxin Leng
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Changlong Bi
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Aixia Zhai
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
7
|
Sun Y, Xu X, Zhao W, Zhang Y, Chen K, Li Y, Wang X, Zhang M, Xue B, Yu W, Hou Y, Wang C, Xie W, Li C, Kong D, Wang S, Sun Y. RAD21 is the core subunit of the cohesin complex involved in directing genome organization. Genome Biol 2023; 24:155. [PMID: 37381036 DOI: 10.1186/s13059-023-02982-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/07/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND The ring-shaped cohesin complex is an important factor for the formation of chromatin loops and topologically associating domains (TADs) by loop extrusion. However, the regulation of association between cohesin and chromatin is poorly understood. In this study, we use super-resolution imaging to reveal the unique role of cohesin subunit RAD21 in cohesin loading and chromatin structure regulation. RESULTS We directly visualize that up-regulation of RAD21 leads to excessive chromatin loop extrusion into a vermicelli-like morphology with RAD21 clustered into foci and excessively loaded cohesin bow-tying a TAD to form a beads-on-a-string-type pattern. In contrast, up-regulation of the other four cohesin subunits results in even distributions. Mechanistically, we identify that the essential role of RAD21 is attributed to the RAD21-loader interaction, which facilitates the cohesin loading process rather than increasing the abundance of cohesin complex upon up-regulation of RAD21. Furthermore, Hi-C and genomic analysis reveal how RAD21 up-regulation affects genome-wide higher-order chromatin structure. Accumulated contacts are shown at TAD corners while inter-TAD interactions increase after vermicelli formation. Importantly, we find that in breast cancer cells, the expression of RAD21 is aberrantly high with poor patient survival and RAD21 forms beads in the nucleus. Up-regulated RAD21 in HeLa cells leads to compartment switching and up-regulation of cancer-related genes. CONCLUSIONS Our results provide key insights into the molecular mechanism by which RAD21 facilitates the cohesin loading process and provide an explanation to how cohesin and loader work cooperatively to promote chromatin extrusion, which has important implications in construction of three-dimensional genome organization.
Collapse
Affiliation(s)
- Yuao Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Xin Xu
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Wenxue Zhao
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, 100871, China
| | - Yu Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing, 100084, China
| | - Keyang Chen
- Yuanpei College, Peking University, Beijing, 100871, China
| | - Yongzheng Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Xiaotian Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Mengling Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Boxin Xue
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wanting Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Yingping Hou
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Chaobin Wang
- Breast Center, Peking University People's Hospital, Beijing, 100044, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life Science, Tsinghua University, Beijing, 100084, China
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, 100871, China
| | - Daochun Kong
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Shu Wang
- Breast Center, Peking University People's Hospital, Beijing, 100044, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China.
- Breast Center, Peking University People's Hospital, Beijing, 100044, China.
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Chen L, Shi K, Ditzel N, Qiu W, Figeac F, Nielsen LHD, Tencerova M, Kowal JM, Ding M, Andreasen CM, Andersen TL, Kassem M. KIAA1199 deficiency enhances skeletal stem cell differentiation to osteoblasts and promotes bone regeneration. Nat Commun 2023; 14:2016. [PMID: 37037828 PMCID: PMC10086002 DOI: 10.1038/s41467-023-37651-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
Upon transplantation, skeletal stem cells (also known as bone marrow stromal or mesenchymal stem cells) can regulate bone regeneration by producing secreted factors. Here, we identify KIAA1199 as a bone marrow stromal cell-secreted factor in vitro and in vivo. KIAA1199 plasma levels of patients positively correlate with osteoporotic fracture risk and expression levels of KIAA1199 in patient bone marrow stromal cells negatively correlates with their osteogenic differentiation potential. KIAA1199-deficient bone marrow stromal cells exhibit enhanced osteoblast differentiation in vitro and ectopic bone formation in vivo. Consistently, KIAA1199 knockout mice display increased bone mass and biomechanical strength, as well as an increased bone formation rate. They also exhibit accelerated healing of surgically generated bone defects and are protected from ovariectomy-induced bone loss. Mechanistically, KIAA1199 regulates osteogenesis by inhibiting the production of osteopontin by osteoblasts, via integrin-mediated AKT and ERK-MAPK intracellular signaling. Thus, KIAA1199 is a regulator of osteoblast differentiation and bone regeneration and could be targeted for the treatment or management of low bone mass conditions.
Collapse
Affiliation(s)
- Li Chen
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark.
- Dept. of Pathology and Physiopathology, Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China.
| | - Kaikai Shi
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Nicholas Ditzel
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Weimin Qiu
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Florence Figeac
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Louise Himmelstrup Dreyer Nielsen
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Michaela Tencerova
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Justyna Magdalena Kowal
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Ming Ding
- Department of Orthopaedic Surgery and Traumatology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | | | | | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark.
- Department of Cellular and Molecular Medicine (ICMM), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Domanegg K, Sleeman JP, Schmaus A. CEMIP, a Promising Biomarker That Promotes the Progression and Metastasis of Colorectal and Other Types of Cancer. Cancers (Basel) 2022; 14:cancers14205093. [PMID: 36291875 PMCID: PMC9600181 DOI: 10.3390/cancers14205093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary CEMIP (cell migration-inducing and hyaluronan-binding protein) has been implicated in the pathogenesis of numerous diseases, including colorectal and other forms of cancer. The molecular functions of CEMIP are currently under investigation and include the degradation of the extracellular matrix component hyaluronic acid (HA), as well as the regulation of a number of signaling pathways. In this review, we survey our current understanding of how CEMIP contributes to tumor growth and metastasis, focusing particularly on colorectal cancer, for which it serves as a promising biomarker. Abstract Originally discovered as a hypothetical protein with unknown function, CEMIP (cell migration-inducing and hyaluronan-binding protein) has been implicated in the pathogenesis of numerous diseases, including deafness, arthritis, atherosclerosis, idiopathic pulmonary fibrosis, and cancer. Although a comprehensive definition of its molecular functions is still in progress, major functions ascribed to CEMIP include the depolymerization of the extracellular matrix component hyaluronic acid (HA) and the regulation of a number of signaling pathways. CEMIP is a promising biomarker for colorectal cancer. Its expression is associated with poor prognosis for patients suffering from colorectal and other types of cancer and functionally contributes to tumor progression and metastasis. Here, we review our current understanding of how CEMIP is able to foster the process of tumor growth and metastasis, focusing particularly on colorectal cancer. Studies in cancer cells suggest that CEMIP exerts its pro-tumorigenic and pro-metastatic activities through stimulating migration and invasion, suppressing cell death and promoting survival, degrading HA, regulating pro-metastatic signaling pathways, inducing the epithelial–mesenchymal transition (EMT) program, and contributing to the metabolic reprogramming and pre-metastatic conditioning of future metastatic microenvironments. There is also increasing evidence indicating that CEMIP may be expressed in cells within the tumor microenvironment that promote tumorigenesis and metastasis formation, although this remains in an early stage of investigation. CEMIP expression and activity can be therapeutically targeted at a number of levels, and preliminary findings in animal models show encouraging results in terms of reduced tumor growth and metastasis, as well as combating therapy resistance. Taken together, CEMIP represents an exciting new player in the progression of colorectal and other types of cancer that holds promise as a therapeutic target and biomarker.
Collapse
Affiliation(s)
- Kevin Domanegg
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Jonathan P. Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT) Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence:
| | - Anja Schmaus
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT) Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Zhou M, Hua W, Sun Y. Cell migration inducing hyaluronidase 1 promotes growth and metastasis of papillary thyroid carcinoma. Bioengineered 2022; 13:11822-11831. [PMID: 35543351 PMCID: PMC9276010 DOI: 10.1080/21655979.2022.2074110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cell migration inducing hyaluronidase 1 (CEMIP) mediates catabolism of hyaluronan, and participates in the cell metastasis, invasion, and motility. Dysregulated CEMIP expression was associated with progression and prognosis of tumors. The role of CEMIP in papillary thyroid carcinoma (PTC) remains unknown. Our study showed that CEMIP was upregulated in both tissues and cells of PTC. Silencing of CEMIP reduced cell proliferation and suppressed migration and invasion of PTC. Protein expression of phosphorylated STAT3 (Signal Transducer And Activator Of Transcription 3) (p-STAT3), AKT (p-AKT) and p65 (p-p65) were decreased by CEMIP silencing in PTC cells. Pyruvate dehydrogenase kinase 4 (PDK4) over-expression attenuated CEMIP silencing-induced decrease in p-STAT3, p-AKT and p-p65. Silencing of CEMIP-induced decrease in cell proliferation and metastasis in PTC were restored by over-expression of STAT3. CEMIP functioned as an oncogenic gene in PTC through PDK4-mediated activation of STAT3/AKT/NF-κB pathway.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Hua
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yulan Sun
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Kokoretsis D, Maniaki EK, Kyriakopoulou K, Koutsakis C, Piperigkou Z, Karamanos NK. Hyaluronan as "Agent Smith" in cancer extracellular matrix pathobiology: Regulatory roles in immune response, cancer progression and targeting. IUBMB Life 2022; 74:943-954. [PMID: 35261139 DOI: 10.1002/iub.2608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/16/2022]
Abstract
Extracellular matrix (ECM) critically regulates cancer cell behavior by governing cell signaling and properties. Hyaluronan (HA) acts as a structural and functional ECM component that mediates critical properties of cancer cells in a molecular size-dependent manner. HA fragments secreted by cancer-associated fibroblasts (CAFs) reveal the correlation of HA to CAF-mediated matrix remodeling, a key step for the initiation of metastasis. The main goal of this article is to highlight the vital functions of HA in cancer cell initiation and progression as well as HA-mediated paracrine interactions among cancer and stromal cells. Furthermore, the HA implication in mediating immune responses to cancer progression is also discussed. Novel data on the role of HA in the formation of pre-metastatic niche may contribute towards the improvement of current theranostic approaches that benefit cancer management.
Collapse
Affiliation(s)
- Dimitris Kokoretsis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Evangelia-Konstantina Maniaki
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
12
|
Dong X, Yang Y, Yuan Q, Hou J, Wu G. High Expression of CEMIP Correlates Poor Prognosis and the Tumur Microenvironment in Breast Cancer as a Promisingly Prognostic Biomarker. Front Genet 2021; 12:768140. [PMID: 34966410 PMCID: PMC8710689 DOI: 10.3389/fgene.2021.768140] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 01/14/2023] Open
Abstract
Cell migration-inducing hyaluronidase 1 (CEMIP), a Wnt-related protein and also known as KIAA1199, is implicated in the process of metastatic colonization in a variety of malignant tumors, including breast cancer (BC), which is one of the most frequently diagnosed tumors in women worldwide. In this study, multiple public databases, online analytical tools, and bioinformatics approaches were applied to explore the expression levels, regulatory mechanisms, and biological functions of CEMIP in BC. We illustrated that CEMIP was highly expressed in various kinds of carcinomas, including BC, especially advanced subtypes, and predicted less favorable prognosis (negatively associated with overall survival) in BC patients, which might be an independent prognostic factor. Then, we revealed that the mutation and high expression of CEMIP might lead to it as an oncogene. We also demonstrated that TP53 mutation, DNA hypo-methylation, and the expression changes of three potential upstream transcription factors (EZH2, EGR1, and JUN) of CEMIP were likely to cause the hyperexpression of CEMIP in BC. Moreover, our findings suggested that CEMIP might exert its carcinogenic roles in the tumor microenvironment via participation in the extracellular matrix formation, increasing cancer-associated fibroblast (CAF), M2 macrophage, and neutrophil infiltration and decreasing CD8+ T cell infiltration. In summary, our study provided more solid evidence for CEMIP as a prognostic and metastatic biomarker and a potential therapeutic target in BC. Of course, these findings also need more confirmations of basic experiments and further clinical trials in the future.
Collapse
Affiliation(s)
- Xingxing Dong
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yalong Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qianqian Yuan
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinxuan Hou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Sun L, Ding S, Luo Q, Wang P, Yang X, Wu L, Chen Y, Zheng X, Zhang H, Yuan L, Ruan S, Xie C. Taxus wallichiana var. chinensis (Pilg.) Florin Aqueous Extract Suppresses the Proliferation and Metastasis in Lung Carcinoma via JAK/STAT3 Signaling Pathway. Front Pharmacol 2021; 12:736442. [PMID: 34867344 PMCID: PMC8635059 DOI: 10.3389/fphar.2021.736442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
As one of the most common neoplasms globally, lung cancer (LC) is the leading cause of cancer-related mortality. Recurrence and metastasis negatively influencing therapeutic efficacy and overall survival demand new strategies in LC treatment. The advantages of TCM are increasingly highlighted. In this study, we obtained the major chemical components and their ratios in the aqueous extract of Taxus wallichiana var. chinensis (Pilg.) Florin (AETW) by UPLC-Q/TOF-MS/MS detection. The CCK-8 assay revealed that AETW could selectively inhibit the growth of A549 and HCC827 cells in a dose-dependent manner with little effect on normal human lung cells. Moreover, both in vitro and in vivo experiments showed that AETW was able to suppress the capacities of cell migration and invasion and downregulate the EMT and the JAK/STAT3 signaling pathway. To further probe into the molecular mechanism, the overexpression of STAT3 was performed into LC cells with AETW treatment, which counteracted the inhibitory effect on malignant behaviors of A549 and HCC827 cells with the decline in the expressions of p-JAK and p-STAT3. Taken together, we propose that AETW may inhibit the proliferation and metastasis by inactivating the JAK/STAT3 axis.
Collapse
Affiliation(s)
- Leitao Sun
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Shuning Ding
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi Luo
- Qingbo Community Health Service Center of Shangcheng District, Hangzhou, China
| | - Peipei Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao Yang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linqin Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yangfan Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xueer Zheng
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hang Zhang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yuan
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Changsheng Xie
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
14
|
Li T, Wang T, Yan L, Ma C. Identification of potential novel biomarkers for abdominal aortic aneurysm based on comprehensive analysis of circRNA-miRNA-mRNA networks. Exp Ther Med 2021; 22:1468. [PMID: 34737808 PMCID: PMC8561771 DOI: 10.3892/etm.2021.10903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/08/2021] [Indexed: 01/10/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening disorder and, therefore, investigation into its underlying mechanisms in light of the competing endogenous RNAs (ceRNAs) hypothesis has gradually increased. However, there is still lacking systematic analysis on AAA-associated circular RNA (circRNA)-microRNA (miRNA/miR)-messenger RNA (mRNA) interaction networks based on bioinformatics methods. The present study attempted to identify novel molecular biomarkers for AAA by profiling circRNA-miRNA-mRNA networks using three public microarray datasets (GSE7084, GSE57691 and GSE144431). A total of 135 differentially expressed genes (DEGs) and 142 differentially expressed circRNAs were detected using the limma R package with the statistical threshold of P<0.05 and |log2fold change (FC)| >1.5. In addition, 12 circRNA-miRNA-mRNA axes were identified to construct upregulated and downregulated ceRNA networks using Cytoscape. Based on molecular complex detection algorithm, (hsa_circ_0057691/0092108/0006845/0082182)- miR-330-5p-calponin 1 (CNN1) and (hsa_circ_0061482/0011450/0008351/0004121)-miR-326-CD8a molecule (CD8A) were recognized as the center axes in ceRNA networks. Reverse transcription-quantitative PCR results verified the significant downregulation of CNN1 and upregulation of CD8A in human AAA tissues (P<0.05). In addition, four upregulated circRNA/mRNA axes, and five downregulated circRNA/mRNA axes were revealed to have possible biological functions in the pathogenesis of AAA using the Cytoscape software. Receiver operating characteristic analysis demonstrated the accuracy of these nine DEGs involved in these axes for AAA diagnosis with area under the curves >0.80. The present study revealed novel circRNA-miRNA-mRNA networks associated with AAA, especially for CNN1 and CD8A axes with the potential function of ‘focal adhesion’ and ‘immune response’, respectively. Overall, the present findings may provide evidence to explore the implicated ceRNAs in the molecular mechanisms and as novel biomarkers for AAA.
Collapse
Affiliation(s)
- Tan Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tianlong Wang
- The First Clinical College of China Medical University, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lirong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
15
|
Song M, Liu J, Zheng X, Zhou X, Feng Z, Hu W. MiR-148a-3p targets CEMIP to suppress the genesis of gastric cancer cells. Biochem Biophys Res Commun 2021; 575:42-49. [PMID: 34455220 DOI: 10.1016/j.bbrc.2021.08.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Gastric cancer is the sixth common malignancy worldwide. Dysregulation of Cell Migration Inducing Hyaluronidase 1 (CEMIP) gene and microRNA-148a -3p (miR-148a-3p) expressions has been found in gastric cancer genesis. However, the underlying molecular mechanism in gastric cancer needs further investigation. METHODS The expression of gastric cancer tissues' and cells' CEMIP and miR-148a-3p were examined by RT-qPCR. The interaction between miR-148a-3p and CEMIP was verified by luciferase activity detection. Cell viability, proliferation, adhesion, and apoptosis in gastric cancer GTL-16 and AGS cells were analyzed by CCK8, BrdU, cell adhesion, and FITC assay. RESULTS CEMIP expression was significantly elevated, but the miR-148a-3p level was downregulated in gastric cancer tissues and cell lines. Overexpression of CEMIP accelerated cell viability, proliferation, and adhesion, but attenuated cell apoptosis of gastric cancer cells. In addition, upregulation of miR-148a-3p repressed the development of gastric cancer in vitro. Moreover, miR-148a-3p suppressed gastric cancer tumorigenesis by inhibiting the expression of CEMIP. CONCLUSION The study clarified that miR-148a-3p suppressed gastric cancer tumorigenesis by inhibiting CEMIP, which may be effective targets for the clinical treatment of gastric cancer.
Collapse
Affiliation(s)
- Ming Song
- Department of General Surgery, Wuhan Third Hospital, Wuhan, 430000, Hubei, China
| | - Jun Liu
- Department of General Surgery, Wuhan Third Hospital, Wuhan, 430000, Hubei, China
| | - Xin Zheng
- Department of General Surgery, Wuhan Third Hospital, Wuhan, 430000, Hubei, China
| | - Xin Zhou
- Department of General Surgery, Wuhan Third Hospital, Wuhan, 430000, Hubei, China
| | - Zehui Feng
- Department of General Surgery, Dongfeng Hospital of Hubei University of Medicine, Wuhan, 430000, Hubei, China
| | - Wei Hu
- Department of General Surgery, Wuhan Third Hospital, Wuhan, 430000, Hubei, China.
| |
Collapse
|
16
|
Benkafadar N, Janesick A, Scheibinger M, Ling AH, Jan TA, Heller S. Transcriptomic characterization of dying hair cells in the avian cochlea. Cell Rep 2021; 34:108902. [PMID: 33761357 DOI: 10.1016/j.celrep.2021.108902] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/11/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
Sensory hair cells are prone to apoptosis caused by various drugs including aminoglycoside antibiotics. In mammals, this vulnerability results in permanent hearing loss because lost hair cells are not regenerated. Conversely, hair cells regenerate in birds, making the avian inner ear an exquisite model for studying ototoxicity and regeneration. Here, we use single-cell RNA sequencing and trajectory analysis on control and dying hair cells after aminoglycoside treatment. Interestingly, the two major subtypes of avian cochlear hair cells, tall and short hair cells, respond differently. Dying short hair cells show a noticeable transient upregulation of many more genes than tall hair cells. The most prominent gene group identified is associated with potassium ion conductances, suggesting distinct physiological differences. Moreover, the dynamic characterization of >15,000 genes expressed in tall and short avian hair cells during their apoptotic demise comprises a resource for further investigations toward mammalian hair cell protection and hair cell regeneration.
Collapse
Affiliation(s)
- Nesrine Benkafadar
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Amanda Janesick
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mirko Scheibinger
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Angela H Ling
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Taha A Jan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stefan Heller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|