1
|
Sharma A, Chiang RA, Manginell M, Nardi I, Coker EN, Vanegas JM, Rempe SB, Bachand GD. Carbonic Anhydrase Robustness for Use in Nanoscale CO 2 Capture Technologies. ACS OMEGA 2023; 8:37830-37841. [PMID: 37867662 PMCID: PMC10586288 DOI: 10.1021/acsomega.3c02630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023]
Abstract
Continued dependence on crude oil and natural gas resources for fossil fuels has caused global atmospheric carbon dioxide (CO2) emissions to increase to record-setting proportions. There is an urgent need for efficient and inexpensive carbon sequestration systems to mitigate large-scale emissions of CO2 from industrial flue gas. Carbonic anhydrase (CA) has shown high potential for enhanced CO2 capture applications compared to conventional absorption-based methods currently utilized in various industrial settings. This study aims to understand structural aspects that contribute to the stability of CA enzymes critical for their applications in industrial processes, which require the ability to withstand conditions different from those in their native environments. Here, we evaluated the thermostability and enzyme activity of mesophilic and thermophilic CA variants at different temperature conditions and in the presence of atmospheric gas pollutants like nitrogen oxides and sulfur oxides. Based on our enzyme activity assays and molecular dynamics simulations, we see increased conformational stability and CA activity levels in thermostable CA variants incubated week-long at different temperature conditions. The thermostable CA variants also retained high levels of CA activity despite changes in solution pH due to increasing NO and SO2 concentrations. A loss of CA activity was observed only at high concentrations of NO/SO2 that possibly can be minimized with the appropriate buffered solutions.
Collapse
Affiliation(s)
- Arjun Sharma
- Department
of Physics, The University of Vermont, Burlington, Vermont 05405-0160, United
States
| | - Rong-an Chiang
- Memzyme,
LLC, Albuquerque, New Mexico 87123, United States
| | - Monica Manginell
- Center
for Integrated Nanotechnologies, Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Isaac Nardi
- Epigentor
Consultants, Inc., Miami, Florida 87185, United States
| | - Eric N. Coker
- Electronic,
Optical, and Nanomaterials Department, Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Juan M. Vanegas
- Department
of Physics, The University of Vermont, Burlington, Vermont 05405-0160, United
States
| | - Susan B. Rempe
- Center
for Integrated Nanotechnologies, Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| | - George D. Bachand
- Center
for Integrated Nanotechnologies, Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
2
|
Chafik A, Essamadi A, Çelik SY, Mavi A. Purification and biochemical characterization of a novel carbonic anhydrase II from erythrocytes of camel (Camelusdromedarius). Biochem Biophys Res Commun 2023; 676:171-181. [PMID: 37517220 DOI: 10.1016/j.bbrc.2023.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
A novel carbonic anhydrase II (CA II) from erythrocytes of camel (Camelus dromedarius) was purified to homogeneity using affinity chromatography and biochemically characterized. Specific activity of 140.88 U/mg was obtained with 745.17-fold purification and 25.37% yield. The enzyme was a monomer with a lower molecular weight (25 kDa) and lower Zn content (0.50 mol of Zn per mol of protein). The enzyme showed higher optimum temperature (70 °C) and pH (pH 9.0), moreover, it was stable at higher temperatures and strongly alkaline pH as judged by thermodynamic parameters (Ea, kd, Ed, t1/2, D-value, Z-value, ΔH, ΔG and ΔS). The enzyme was inhibited by cations (Al3+, Ca2+, Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Ni2+, Mg2+ and Zn2+) as well as by anions (Br‾, CH3COO‾, ClO4‾, CN‾, F‾, HCO3‾, I‾, N3‾, NO3‾ and SCN‾), some anions (C6H5O73-, CO32-, SeO3‾ and SO42-) does not affect enzyme activity. Effect of various chemicals on enzyme activity was also investigated. Km, Vmax, kcat and kcat/Km values for 4-NPA were found to be 1.74 mM, 0.0093 U/mL, 0,0039 s-1 and 0,0023 s-1 mM-1, respectively. With these interesting biochemical properties, camel CA II represents promising candidate for harsh industrial applications, in particular, for a successful biomimetic CO2 sequestration process.
Collapse
Affiliation(s)
- Abdelbasset Chafik
- Higher School of Technology of El Kelâa des Sraghna, Cadi Ayyad University, Beni Mellal Road Km 8, BP 104, El Kelâa des Sraghna, 43000, Morocco; Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, Hassan First University, Settat, 26000, Morocco; Bioresources and Food Safety Laboratory, Faculty of Sciences and Techniques, Cadi Ayyad University, Boulevard Abdelkrim Khattabi, BP 549, Marrakech, 40000, Morocco.
| | - Abdelkhalid Essamadi
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, Hassan First University, Settat, 26000, Morocco
| | - Safinur Yildirim Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Atatürk University, 25240, Erzurum, Turkey
| | - Ahmet Mavi
- Chemistry Laboratory, Department of Mathematics and Science Education, Kazim Karabekir Education Faculty, Atatürk University, 25240, Erzurum, Turkey; Department of Nanoscience & Nanoengineering, Graduate School of Natural & Applied Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
3
|
Sato R, Amao Y. Carbonic anhydrase/formate dehydrogenase bienzymatic system for CO 2 capture, utilization and storage. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00405k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In order to establish carbon capture, utilization, and storage (CCUS) technology, a system consisting of two different biocatalysts (formate dehydrogenase from Candida boidinii; CbFDH and carbonic anhydrase from bovine erythrocytes; CA) is developed.
Collapse
Affiliation(s)
- Ryohei Sato
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yutaka Amao
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Research Centre for Artificial Photosynthesis (ReCAP), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
4
|
Zhang Z, Li F, Nie Y, Zhang X, Zhang S, Ji X. Zinc-based deep eutectic solvent – An efficient carbonic anhydrase mimic for CO2 hydration and conversion. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Alterio V, Langella E, Buonanno M, Esposito D, Nocentini A, Berrino E, Bua S, Polentarutti M, Supuran CT, Monti SM, De Simone G. Zeta-carbonic anhydrases show CS 2 hydrolase activity: A new metabolic carbon acquisition pathway in diatoms? Comput Struct Biotechnol J 2021; 19:3427-3436. [PMID: 34194668 PMCID: PMC8217695 DOI: 10.1016/j.csbj.2021.05.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 12/26/2022] Open
Abstract
CDCA1 is a carbonic anhydrase that can utilize Zn(II) or Cd(II) as catalytic metal. CDCA1 has been the first enzyme to show an efficient utilization of Cd(II) ions in Nature. By using a multidisciplinary approach, we discovered that CS2 is a substrate for this enzyme. CDCA1 is the unique enzyme, known so far, able to use both CS2 and CO2 as substrates.
CDCA1 is a very peculiar member of the Carbonic Anhydrase (CA) family. It has been the first enzyme to show an efficient utilization of Cd(II) ions in Nature and a unique adaptation capability to live on the surface ocean. Indeed, in this environment, which is extremely depleted in essential metal ions, CDCA1 can utilize Zn(II) or Cd(II) as catalytic metal to support the metabolic needs of fast growing diatoms. In this paper we demonstrate a further catalytic versatility of this enzyme by using a combination of X-ray crystallography, molecular dynamics simulations and enzymatic experiments. First we identified the CO2 binding site and the way in which this substrate travels from the environment to the enzyme active site. Then, starting from the observation of a structural similarity with the substrate entry route of CS2 hydrolase from Acidanius A1-3, we hypothesized and demonstrated that also CS2 is a substrate for CDCA1. This finding is new and unexpected since until now only few CS2 hydrolases have been characterized, and none of them is reported to have any CO2 hydratase action. The physiological implications of this supplementary catalytic activity still remain to be unveiled. We suggest here that it could represent another ability of diatoms expressing CDCA1 to adapt to the external environment. Indeed, the ability of this enzyme to convert CS2 could represent an alternative source of carbon acquisition for diatoms, in addition to CO2.
Collapse
Key Words
- AAZ, Acetazolamide
- CA, Carbonic Anhydrase
- CAI, Carbonic Anhydrase Inhibitor
- CCD, Charge Coupled Device
- CDCA1, Cadmium-specific Carbonic Anhydrase
- CO2
- CS2
- CS2H, S. solfataricus CS2 hydrolase
- Cambialistic enzyme
- Carbonic Anhydrase
- DMSO, Dimethyl Sulfoxide
- FbiCA, Flaveria bidentis Carbonic Anhydrase
- HEPES, 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid
- IPTG, Isopropyl-β-D-1-thiogalactopyranoside
- MD, Molecular Dynamics
- Molecular dynamics
- NCS, Non-Crystallographic Symmetry
- PDB, Protein Data Bank
- PEG, Polyethylene glycol
- SDS-PAGE, Sodium Dodecyl Sulphate - PolyAcrylamide Gel Electrophoresis
- Tris-HCl, Tris(hydroxymethyl)aminomethane hydrochloride
- bCA, bovine Carbonic Anhydrase
- hCA, human Carbonic Anhydrase
- psCA3, Pseudomonas aeruginosa Carbonic Anhydrase 3
Collapse
Affiliation(s)
- Vincenzo Alterio
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Emma Langella
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Martina Buonanno
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Davide Esposito
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Emanuela Berrino
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Silvia Bua
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Maurizio Polentarutti
- Elettra - Sincrotrone Trieste, s.s. 14 Km 163.5 in Area Science Park, Basovizza (Trieste) 34149, Trieste, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Simona Maria Monti
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy
| | - Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Napoli, Italy
| |
Collapse
|
6
|
|
7
|
Efficient sequestration of carbon dioxide into calcium carbonate using a novel carbonic anhydrase purified from liver of camel (Camelus dromedarius). J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Zhang Y, Barboiu M, Ramström O, Chen J. Surface-Directed Selection of Dynamic Constitutional Frameworks as an Optimized Microenvironment for Controlled Enzyme Activation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P.R. China
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, F-34095 Montpellier, France
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, P.R. China
| |
Collapse
|
9
|
Investigation of the inhibitory effects of isoindoline-1,3-dion derivatives on hCA-I and hCA-II enzyme activities. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Sanyanga TA, Nizami B, Bishop ÖT. Mechanism of Action of Non-Synonymous Single Nucleotide Variations Associated with α-Carbonic Anhydrase II Deficiency. Molecules 2019; 24:E3987. [PMID: 31690045 PMCID: PMC6864701 DOI: 10.3390/molecules24213987] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Human carbonic anhydrase II (CA-II) is a Zinc (Zn 2 + ) metalloenzyme responsible for maintenance of acid-base balance within the body through the reversible hydration of CO 2 to produce protons (H + ) and bicarbonate (BCT). Due to its importance, alterations to the amino acid sequence of the protein as a result of single nucleotide variations (nsSNVs) have detrimental effects on homeostasis. Six pathogenic CA-II nsSNVs, K18E, K18Q, H107Y, P236H, P236R and N252D were identified, and variant protein models calculated using homology modeling. The effect of each nsSNV was analyzed using motif analysis, molecular dynamics (MD) simulations, principal component (PCA) and dynamic residue network (DRN) analysis. Motif analysis identified 11 functionally important motifs in CA-II. RMSD data indicated subtle SNV effects, while PCA analysis revealed that the presence of BCT results in greater conformational sampling and free energy in proteins. DRN analysis showed variant allosteric effects, and the average betweenness centrality (BC) calculations identified Glu117 as the most important residue for communication in CA-II. The presence of BCT was associated with a reduction to Glu117 usage in all variants, suggesting implications for Zn 2 + dissociation from the CA-II active site. In addition, reductions to Glu117 usage are associated with increases in the usage of the primary and secondary Zn 2 + ligands; His94, His96, His119 and Asn243 highlighting potential compensatory mechanisms to maintain Zn 2 + within the active site. Compared to traditional MD simulation investigation, DRN analysis provided greater insights into SNV mechanism of action, indicating its importance for the study of missense mutation effects in proteins and, in broader terms, precision medicine related research.
Collapse
Affiliation(s)
- Taremekedzwa Allan Sanyanga
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
| | - Bilal Nizami
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary.
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
11
|
Abstract
Spontaneous solute and solvent permeation through membranes is of vital importance to human life, be it gas exchange in red blood cells, metabolite excretion, drug/toxin uptake, or water homeostasis. Knowledge of the underlying molecular mechanisms is the sine qua non of every functional assignment to membrane transporters. The basis of our current solubility diffusion model was laid by Meyer and Overton. It correlates the solubility of a substance in an organic phase with its membrane permeability. Since then, a wide range of studies challenging this rule have appeared. Commonly, the discrepancies have their origin in ill-used measurement approaches, as we demonstrate on the example of membrane CO2 transport. On the basis of the insight that scanning electrochemical microscopy offered into solute concentration distributions in immediate membrane vicinity of planar membranes, we analyzed the interplay between chemical reactions and diffusion for solvent transport, weak acid permeation, and enzymatic reactions adjacent to membranes. We conclude that buffer reactions must also be considered in spectroscopic investigations of weak acid transport in vesicular suspensions. The evaluation of energetic contributions to membrane translocation of charged species demonstrates the compatibility of the resulting membrane current with the solubility diffusion model. A local partition coefficient that depends on membrane penetration depth governs spontaneous membrane translocation of both charged and uncharged molecules. It is determined not only by the solubility in an organic phase but also by other factors like cholesterol concentration and intrinsic electric membrane potentials.
Collapse
Affiliation(s)
- Christof Hannesschlaeger
- From the Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| | - Andreas Horner
- From the Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| | - Peter Pohl
- From the Institute of Biophysics , Johannes Kepler University Linz , Gruberstrasse 40 , 4020 Linz , Austria
| |
Collapse
|
12
|
Çelik H, Babagil A. Microwave-assisted synthesis of N-benzylidene-4-fluoroaniline and N-benzylidene-4-Nitroaniline and their inhibitory activities on hCA isoenzymes. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2019. [DOI: 10.21448/ijsm.479108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Catalytic Water Oxidation by Iridium-Modified Carbonic Anhydrase. Chem Asian J 2018; 13:334-341. [DOI: 10.1002/asia.201701543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/24/2017] [Indexed: 11/07/2022]
|
14
|
Potential inhibitors of human carbonic anhydrase isozymes I and II: Design, synthesis and docking studies of new 1,3,4-thiadiazole derivatives. Bioorg Med Chem 2017; 25:3547-3554. [DOI: 10.1016/j.bmc.2017.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/29/2017] [Accepted: 05/03/2017] [Indexed: 11/17/2022]
|
15
|
Altıntop MD, Sever B, Akalın Çiftçi G, Kucukoglu K, Özdemir A, Soleimani SS, Nadaroglu H, Kaplancıklı ZA. Synthesis and evaluation of new benzodioxole-based dithiocarbamate derivatives as potential anticancer agents and hCA-I and hCA-II inhibitors. Eur J Med Chem 2016; 125:190-196. [PMID: 27657811 DOI: 10.1016/j.ejmech.2016.09.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/25/2016] [Accepted: 09/09/2016] [Indexed: 01/20/2023]
Abstract
In the current work, new benzodioxole-based dithiocarbamate derivatives were synthesized via the reaction of N-(1,3-benzodioxol-5-ylmethyl)-2-chloroacetamide with appropriate sodium salts of N,N-disubstituted dithiocarbamic acids. These derivatives were evaluated for their cytotoxic effects on A549 human lung adenocarcinoma and C6 rat glioma cell lines. N-(1,3-Benzodioxol-5-ylmethyl)-2-[4-(4-nitrophenyl)-1-piperazinylthiocarbamoylthio]acetamide (10) can be identified as the most promising anticancer agent against C6 cell line due to its notable inhibitory effect on C6 cells with an IC50 value of 23.33 ± 7.63 μg/mL when compared with cisplatin (IC50 = 19.00 ± 5.29 μg/mL). On the other hand, compound 10 did not show any significant cytotoxic activity against A549 cell line. The compounds were also tested for their in vitro inhibitory effects on hCA-I and hCA-II. Generally, the tested compounds were more effective on CAs than acetazolamide, the reference agent. Among these compounds, N-(1,3-benzodioxol-5-ylmethyl)-2-[(morpholinyl)thiocarbamoylthio]acetamide (3) and N-(1,3-benzodioxol-5-ylmethyl)-2-[(thiomorpholinyl)thiocarbamoylthio]acetamide (4) were found to be the most effective compounds on hCA-I with IC50 values of 0.346 nM and 0.288 nM, and hCA-II with IC50 values of 0.287 nM and 0.338 nM, respectively.
Collapse
Affiliation(s)
- Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Kaan Kucukoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, 25240, Erzurum, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Seyedeh Sara Soleimani
- Department of Nano-Science and Nano-Engineering, Faculty of Engineering, Ataturk University, 25240, Erzurum, Turkey
| | - Hayrunnisa Nadaroglu
- Department of Food Technology, Erzurum Vocational Training School, Ataturk University, 25240, Erzurum, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
16
|
Altintop MD, Ozdemir A, Kucukoglu K, Turan-Zitouni G, Nadaroglu H, Kaplancikli ZA. Synthesis and evaluation of new thiadiazole derivatives as potential inhibitors of human carbonic anhydrase isozymes (hCA-I and hCA-II). J Enzyme Inhib Med Chem 2014; 30:32-7. [PMID: 24666301 DOI: 10.3109/14756366.2013.873038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
2-[[5-(2,4-Difluoro/dichlorophenylamino)-1,3,4-thiadiazol-2-yl]thio] acetophenone derivatives (3a--s) were designed as human carbonic anhydrase isozymes (hCA-I and hCA-II) inhibitors and synthesized. hCA-I and hCA-II were purified from erythrocyte cells by the affinity chromatography. The inhibitory effects of 18 newly synthesized acetophenones on hydratase activity of these isoenzymes were studied in vitro. The average IC50 values of the new compounds for hydratase activity ranged from 0.033 to 0.14 μM for hCA-I and from 0.030 to 0.11 μM for hCA-II. Among the newly synthesized compounds, 2-[[5-(2,4-dichlorophenylamino)-1,3,4-thiadiazol-2-yl]thio]-4'-bromoacetophenone (3n) can be considered as a promising hCA-II inhibitor owing to its selective and potent inhibitory effect on hCA-II.
Collapse
Affiliation(s)
- Mehlika Dilek Altintop
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University , Eskisehir , Turkey
| | | | | | | | | | | |
Collapse
|
17
|
Hisar O, Beydemir Ş, Bülbül M, Yanik T. Kinetic Properties of Carbonic Anhydrase Purified from Gills of Rainbow Trout (Oncorhynchus mykiss). JOURNAL OF APPLIED ANIMAL RESEARCH 2011. [DOI: 10.1080/09712119.2006.9706615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
18
|
Sharma A, Bhattacharya A, Pujari R, Shrivastava A. Characterization of carbonic anhydrase from diversified genus for biomimetic carbon-dioxide sequestration. Indian J Microbiol 2008; 48:365-71. [PMID: 23100736 PMCID: PMC3476768 DOI: 10.1007/s12088-008-0045-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 01/05/2008] [Indexed: 10/21/2022] Open
Abstract
Diversified group of bacteria were screened for carbonic anhydrase (CA) activity. Significant CA activity was found in crude enzyme extracts of Enterobacter and Aeromonas isolates while minimal or negligible CA activity was observed in case of Shigella and Klebsiella spp. Optimization and characterization study of potent CA producing isolates revealed that the maximum enzyme activity of 3.86 EU/ml was observed in E. taylorae and the optimum pH range for enzyme stability was found to be 7.5-9.0 along with an optimum temperature range of 35-50 °C. The molecular mass of CA was 29-kDa indicating α-type with periplasmic and cytosolic location. Present investigation for the first time reports CA in diversified genus and optimized parameters for enhanced production of CA in Enterobacter sp. & Aeromonas sp. from fresh water bodies that inturn lay down grounds for exploitation of CA from E. taylorae as an efficient catalyst for CO(2) sequestration within a bioreactor.
Collapse
Affiliation(s)
- Anjana Sharma
- Bacteriology Laboratory, Department of P.G studies and Research in Biological Sciences, R.D University, Jabalpur, 482 001 (M.P.) India
| | - Abhishek Bhattacharya
- Bacteriology Laboratory, Department of P.G studies and Research in Biological Sciences, R.D University, Jabalpur, 482 001 (M.P.) India
| | - Rajesh Pujari
- Bacteriology Laboratory, Department of P.G studies and Research in Biological Sciences, R.D University, Jabalpur, 482 001 (M.P.) India
| | - Ankita Shrivastava
- Bacteriology Laboratory, Department of P.G studies and Research in Biological Sciences, R.D University, Jabalpur, 482 001 (M.P.) India
| |
Collapse
|