Magellan H, Drujon T, Thellend A, Piffeteau A, Becker HF. Expression in E. coli and characterization of the catalytic domain of Botrytis cinerea chitin synthase.
BMC Res Notes 2010;
3:299. [PMID:
21070667 PMCID:
PMC2997770 DOI:
10.1186/1756-0500-3-299]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/11/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND
Chitin synthase 3a (CHS3a) from Botrytis cinerea (Bc) catalyses the multiple transfer of N-acetylglucosamine (GlcNAc) residues to the growing chitin chain. Chitin, a β-1,4 linked GlcNAc homopolymer, is an essential cell wall component of filamentous fungi. Chitin synthase, processive membranous protein, has been recognized as a promising target for new antifungicides. Enzymatic characterizations of chitin synthases have been limited, mainly because purity and amounts of integral enzyme obtained after purification procedures have not been sufficient.
FINDINGS
We undertook the preparation of two BcCHS3a fragment proteins, containing only the central domain and devoid of the N-terminal and transmembrane C-terminal regions. The central domain of CHS3a, named SGC (Spsa GntI Core), is conserved in all UDP-glycosyltransferases and it is believed to contain the active site of the enzyme. CHS3a-SGC protein was totally expressed as inclusion bodies in Escherichia coli. We performed recombinant CHS3a-SGC purification in denaturing conditions, followed by a refolding step. Although circular dichroism spectra clearly exhibited secondary structures of renatured CHS3a-SGC, no chitin synthase activity was detected. Nevertheless CHS3a-SGC proteins show specific binding for the substrate UDP-GlcNAc with a dissociation constant similar to the Michaelis constant and a major contribution of the uracil moiety for recognition was confirmed.
CONCLUSIONS
Milligram-scale quantities of CHS3a-SGC protein with native-like properties such as specific substrate UDP-GlcNAc binding could be easily obtained. These results are encouraging for subsequent heterologous expression of full-length CHS3a.
Collapse