1
|
Voinova VV, Zhuikov VA, Zhuikova YV, Sorokina AA, Makhina TK, Bonartseva GA, Parshina EY, Hossain MA, Shaitan KV, Pryadko AS, Chernozem RV, Mukhortova YR, Shlapakova LE, Surmenev RA, Surmeneva MA, Bonartsev AP. Adhesion of Escherichia coli and Lactobacillus fermentum to Films and Electrospun Fibrous Scaffolds from Composites of Poly(3-hydroxybutyrate) with Magnetic Nanoparticles in a Low-Frequency Magnetic Field. Int J Mol Sci 2023; 25:208. [PMID: 38203380 PMCID: PMC10778586 DOI: 10.3390/ijms25010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The ability of materials to adhere bacteria on their surface is one of the most important aspects of their development and application in bioengineering. In this work, the effect of the properties of films and electrospun scaffolds made of composite materials based on biosynthetic poly(3-hydroxybutyrate) (PHB) with the addition of magnetite nanoparticles (MNP) and their complex with graphene oxide (MNP/GO) on the adhesion of E. coli and L. fermentum under the influence of a low-frequency magnetic field and without it was investigated. The physicochemical properties (crystallinity; surface hydrophilicity) of the materials were investigated by X-ray structural analysis, differential scanning calorimetry and "drop deposition" methods, and their surface topography was studied by scanning electron and atomic force microscopy. Crystal violet staining made it possible to reveal differences in the surface charge value and to study the adhesion of bacteria to it. It was shown that the differences in physicochemical properties of materials and the manifestation of magnetoactive properties of materials have a multidirectional effect on the adhesion of model microorganisms. Compared to pure PHB, the adhesion of E. coli to PHB-MNP/GO, and for L. fermentum to both composite materials, was higher. In the magnetic field, the adhesion of E. coli increased markedly compared to PHB-MNP/GO, whereas the effect on the adhesion of L. fermentum was reversed and was only evident in samples with PHB-MNP. Thus, the resultant factors enhancing and impairing the substrate binding of Gram-negative E. coli and Gram-positive L. fermentum turned out to be multidirectional, as they probably have different sensitivity to them. The results obtained will allow for the development of materials with externally controlled adhesion of bacteria to them for biotechnology and medicine.
Collapse
Affiliation(s)
- Vera V. Voinova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Vsevolod A. Zhuikov
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (V.A.Z.); (Y.V.Z.); (T.K.M.); (G.A.B.)
| | - Yulia V. Zhuikova
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (V.A.Z.); (Y.V.Z.); (T.K.M.); (G.A.B.)
| | - Anastasia A. Sorokina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Tatiana K. Makhina
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (V.A.Z.); (Y.V.Z.); (T.K.M.); (G.A.B.)
| | - Garina A. Bonartseva
- The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow 119071, Russia; (V.A.Z.); (Y.V.Z.); (T.K.M.); (G.A.B.)
| | - Evgeniia Yu. Parshina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Muhammad Asif Hossain
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Konstantin V. Shaitan
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| | - Artyom S. Pryadko
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
| | - Roman V. Chernozem
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Yulia R. Mukhortova
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Lada E. Shlapakova
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
| | - Roman A. Surmenev
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Maria A. Surmeneva
- Physical Materials Science and Composite Materials Center, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia; (A.S.P.); (Y.R.M.); (L.E.S.); (R.A.S.); (M.A.S.)
- International Research and Development Center “Piezo- and Magnetoelectric Materials”, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Anton P. Bonartsev
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (V.V.V.); (A.A.S.); (E.Y.P.); (M.A.H.); (K.V.S.)
| |
Collapse
|
2
|
Zharkova II, Volkov AV, Muraev AA, Makhina TK, Voinova VV, Ryabova VM, Gazhva YV, Kashirina AS, Kashina AV, Bonartseva GA, Zhuikov VA, Shaitan KV, Kirpichnikov MP, Ivanov SY, Bonartsev AP. Poly(3-hydroxybutyrate) 3D-Scaffold-Conduit for Guided Tissue Sprouting. Int J Mol Sci 2023; 24:6965. [PMID: 37108133 PMCID: PMC10138660 DOI: 10.3390/ijms24086965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Scaffold biocompatibility remains an urgent problem in tissue engineering. An especially interesting problem is guided cell intergrowth and tissue sprouting using a porous scaffold with a special design. Two types of structures were obtained from poly(3-hydroxybutyrate) (PHB) using a salt leaching technique. In flat scaffolds (scaffold-1), one side was more porous (pore size 100-300 μm), while the other side was smoother (pore size 10-50 μm). Such scaffolds are suitable for the in vitro cultivation of rat mesenchymal stem cells and 3T3 fibroblasts, and, upon subcutaneous implantation to older rats, they cause moderate inflammation and the formation of a fibrous capsule. Scaffold-2s are homogeneous volumetric hard sponges (pore size 30-300 μm) with more structured pores. They were suitable for the in vitro culturing of 3T3 fibroblasts. Scaffold-2s were used to manufacture a conduit from the PHB/PHBV tube with scaffold-2 as a filler. The subcutaneous implantation of such conduits to older rats resulted in gradual soft connective tissue sprouting through the filler material of the scaffold-2 without any visible inflammatory processes. Thus, scaffold-2 can be used as a guide for connective tissue sprouting. The obtained data are advanced studies for reconstructive surgery and tissue engineering application for the elderly patients.
Collapse
Affiliation(s)
- Irina I. Zharkova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-12, Moscow 119234, Russia; (I.I.Z.)
| | - Aleksey V. Volkov
- Federal State Budgetary Institution “N.N. Priorov National Medical Research Center of Traumatology and Orthopedics”, Ministry of Health of the Russian Federation, Priorova Str. 10, Moscow 127299, Russia;
- Department of Oral and Maxillofacial Surgery and Surgical Dentistry, Medical Institute, RUDN Universiry, Miklukho-Maklaya Str., Moscow 6117198, Russia; (A.A.M.)
| | - Aleksandr A. Muraev
- Department of Oral and Maxillofacial Surgery and Surgical Dentistry, Medical Institute, RUDN Universiry, Miklukho-Maklaya Str., Moscow 6117198, Russia; (A.A.M.)
| | - Tatiana K. Makhina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow 119071, Russia
| | - Vera V. Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-12, Moscow 119234, Russia; (I.I.Z.)
| | - Valentina M. Ryabova
- Department of Oral and Maxillofacial Surgery and Surgical Dentistry, Medical Institute, RUDN Universiry, Miklukho-Maklaya Str., Moscow 6117198, Russia; (A.A.M.)
- Federal State Budgetary Educational Institution of Higher Education “Privolzhsky Research Medical University”, Ministry of Health of the Russian Federation, Minin and Pozharsky pl., 10/1, Nizhny Novgorod 603005, Russia
| | - Yulia V. Gazhva
- Department of Oral and Maxillofacial Surgery and Surgical Dentistry, Medical Institute, RUDN Universiry, Miklukho-Maklaya Str., Moscow 6117198, Russia; (A.A.M.)
- Federal State Budgetary Educational Institution of Higher Education “Privolzhsky Research Medical University”, Ministry of Health of the Russian Federation, Minin and Pozharsky pl., 10/1, Nizhny Novgorod 603005, Russia
| | - Alena S. Kashirina
- Federal State Budgetary Educational Institution of Higher Education “Privolzhsky Research Medical University”, Ministry of Health of the Russian Federation, Minin and Pozharsky pl., 10/1, Nizhny Novgorod 603005, Russia
| | - Aleksandra V. Kashina
- Federal State Budgetary Educational Institution of Higher Education “Privolzhsky Research Medical University”, Ministry of Health of the Russian Federation, Minin and Pozharsky pl., 10/1, Nizhny Novgorod 603005, Russia
| | - Garina A. Bonartseva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow 119071, Russia
| | - Vsevolod A. Zhuikov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow 119071, Russia
| | - Konstantin V. Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-12, Moscow 119234, Russia; (I.I.Z.)
| | - Mikhail P. Kirpichnikov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-12, Moscow 119234, Russia; (I.I.Z.)
| | - Sergey Yu. Ivanov
- Department of Oral and Maxillofacial Surgery and Surgical Dentistry, Medical Institute, RUDN Universiry, Miklukho-Maklaya Str., Moscow 6117198, Russia; (A.A.M.)
- Department of Oral and Maxillofacial Surgery, Sechenov University, Trubetskaya Str., 8-2, Moscow 119991, Russia
| | - Anton P. Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-12, Moscow 119234, Russia; (I.I.Z.)
| |
Collapse
|
3
|
Chernozem RV, Pariy I, Surmeneva MA, Shvartsman VV, Planckaert G, Verduijn J, Ghysels S, Abalymov A, Parakhonskiy BV, Gracey E, Gonçalves A, Mathur S, Ronsse F, Depla D, Lupascu DC, Elewaut D, Surmenev RA, Skirtach AG. Cell Behavior Changes and Enzymatic Biodegradation of Hybrid Electrospun Poly(3-hydroxybutyrate)-Based Scaffolds with an Enhanced Piezoresponse after the Addition of Reduced Graphene Oxide. Adv Healthc Mater 2023; 12:e2201726. [PMID: 36468909 DOI: 10.1002/adhm.202201726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/29/2022] [Indexed: 12/12/2022]
Abstract
This is the first comprehensive study of the impact of biodegradation on the structure, surface potential, mechanical and piezoelectric properties of poly(3-hydroxybutyrate) (PHB) scaffolds supplemented with reduced graphene oxide (rGO) as well as cell behavior under static and dynamic mechanical conditions. There is no effect of the rGO addition up to 1.0 wt% on the rate of enzymatic biodegradation of PHB scaffolds for 30 d. The biodegradation of scaffolds leads to the depolymerization of the amorphous phase, resulting in an increase in the degree of crystallinity. Because of more regular dipole order in the crystalline phase, surface potential of all fibers increases after the biodegradation, with a maximum (361 ± 5 mV) after the addition of 1 wt% rGO into PHB as compared to pristine PHB fibers. By contrast, PHB-0.7rGO fibers manifest the strongest effective vertical (0.59 ± 0.03 pm V-1 ) and lateral (1.06 ± 0.02 pm V-1 ) piezoresponse owing to a greater presence of electroactive β-phase. In vitro assays involving primary human fibroblasts reveal equal biocompatibility and faster cell proliferation on PHB-0.7rGO scaffolds compared to pure PHB and nonpiezoelectric polycaprolactone scaffolds. Thus, the developed biodegradable PHB-rGO scaffolds with enhanced piezoresponse are promising for tissue-engineering applications.
Collapse
Affiliation(s)
- Roman V Chernozem
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russia
- Department of Biotechnology, Ghent University, Ghent, 9000, Belgium
| | - Igor Pariy
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Maria A Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Vladimir V Shvartsman
- Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Guillaume Planckaert
- VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, B-9052, Belgium
| | - Joost Verduijn
- Department of Biotechnology, Ghent University, Ghent, 9000, Belgium
| | - Stef Ghysels
- Department of Green Chemistry and Technology, Ghent University, Ghent, 9000, Belgium
| | - Anatolii Abalymov
- Department of Environmental Sciences, Jozef Stefan Institute, Jamova cesta 39, Ljubljana, 1000, Slovenia
| | | | - Eric Gracey
- VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, B-9052, Belgium
| | - Amanda Gonçalves
- VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, B-9052, Belgium
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Frederik Ronsse
- Department of Green Chemistry and Technology, Ghent University, Ghent, 9000, Belgium
| | - Diederik Depla
- Department of Solid State Sciences, Ghent University, 9000, Ghent, Belgium
| | - Doru C Lupascu
- Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Dirk Elewaut
- VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, B-9052, Belgium
| | - Roman A Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russia
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Andre G Skirtach
- Department of Biotechnology, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
4
|
Zhuikova Y, Zhuikov V, Varlamov V. Biocomposite Materials Based on Poly(3-hydroxybutyrate) and Chitosan: A Review. Polymers (Basel) 2022; 14:5549. [PMID: 36559916 PMCID: PMC9782520 DOI: 10.3390/polym14245549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
One of the important directions in the development of modern medical devices is the search and creation of new materials, both synthetic and natural, which can be more effective in their properties than previously used materials. Traditional materials such as metals, ceramics, and synthetic polymers used in medicine have certain drawbacks, such as insufficient biocompatibility and the emergence of an immune response from the body. Natural biopolymers have found applications in various fields of biology and medicine because they demonstrate a wide range of biological activity, biodegradability, and accessibility. This review first described the properties of the two most promising biopolymers belonging to the classes of polyhydroxyalkanoates and polysaccharides-polyhydroxybutyrate and chitosan. However, homopolymers also have some disadvantages, overcome which becomes possible by creating polymer composites. The article presents the existing methods of creating a composite of two polymers: copolymerization, electrospinning, and different ways of mixing, with a description of the properties of the resulting compositions. The development of polymer composites is a promising field of material sciences, which allows, based on the combination of existing substances, to develop of materials with significantly improved properties or to modify of the properties of each of their constituent components.
Collapse
Affiliation(s)
| | - Vsevolod Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, Moscow 119071, Russia
| | | |
Collapse
|
5
|
Chernozem RV, Pariy IO, Pryadko A, Bonartsev AP, Voinova VV, Zhuikov VA, Makhina TK, Bonartseva GA, Shaitan KV, Shvartsman VV, Lupascu DC, Romanyuk KN, Kholkin AL, Surmenev RA, Surmeneva MA. A comprehensive study of the structure and piezoelectric response of biodegradable polyhydroxybutyrate-based films for tissue engineering applications. Polym J 2022; 54:1225-1236. [DOI: 10.1038/s41428-022-00662-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/09/2022] [Accepted: 04/21/2022] [Indexed: 11/09/2022]
|
6
|
Kulikouskaya VI, Nikalaichuk VV, Bonartsev AP, Chyshankou IG, Akoulina EA, Demianova IV, Bonartseva GA, Hileuskaya КS, Voinova VV. Fabrication of microstructured poly(3-hydroxybutyrate) films with controlled surface topography. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF BELARUS, CHEMICAL SERIES 2022; 58:135-148. [DOI: 10.29235/1561-8331-2022-58-2-135-148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The possibility of fabrication of microstructured poly-3-hydroxybutyrate films by self-assembly water microdroplets technique, using artificial templates and polymer inverse emulsions has been studied. It has been established that self-assembly water microdroplets technique allows forming ordered microstructures of poly-3-hydroxybutyrate with a hexagonal arrangement of cells with an adjustable diameter from 1 to 4 цт. It has been shown that application of inverse emulsions of poly-3-hydroxybutyrate allows us to fabricate porous films with a pore size in the range from 0.4 to 3 ^m, while the structure of the films and the pore size can be controlled by changing the polymer concentration in the dispersion medium and the volume ratio of the phases. Using spin-coating technique and artificial templates, it is possible to obtain poly-3-hydroxybutyrate microstructured replicas, which are characterized by a high degree of uniformity and the absence of defective areas. It has been shown that the formed microstructured poly-3-hydroxybutyrate films with controlled surface topography are promising for use as scaffolds for stem cells.
Collapse
Affiliation(s)
- V. I. Kulikouskaya
- Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus
| | - V. V. Nikalaichuk
- Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus
| | | | - I. G. Chyshankou
- Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus
| | | | | | - G. A. Bonartseva
- Research Center of Biotechnology of the Russian Academy of Sciences
| | - К. S. Hileuskaya
- Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus
| | | |
Collapse
|
7
|
Akoulina EA, Demianova IV, Zharkova II, Voinova VV, Zhuikov VA, Khaydapova DD, Chesnokova DV, Menshikh KA, Dudun AA, Makhina TK, Bonartseva GA, Volkov AV, Asfarov TF, Ivanov SY, Shaitan KV, Bonartsev AP. Growth of Mesenchymal Stem Cells on Poly(3-Hydroxybutyrate) Scaffolds Loaded with Simvastatin. Bull Exp Biol Med 2021; 171:172-177. [PMID: 34046794 DOI: 10.1007/s10517-021-05190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 11/09/2022]
Abstract
We studied the effect of porous composite scaffolds based on poly(3-hydroxybutyrate) (PHB) loaded with simvastatin on the growth and differentiation of mesenchymal stem cells. The scaffolds have a suitable microstructure (porosity and pore size) and physicochemical properties to support the growth of mesenchymal stem cells. Scaffold loading with simvastatin suppressed cell growth and increased alkaline phosphatase activity, which can attest to their osteoinductive properties.
Collapse
Affiliation(s)
- E A Akoulina
- Faculty of Biology, M. V. Moscow State University, Moscow, Russia.
| | - I V Demianova
- Faculty of Biology, M. V. Moscow State University, Moscow, Russia
| | - I I Zharkova
- Faculty of Biology, M. V. Moscow State University, Moscow, Russia
| | - V V Voinova
- Faculty of Biology, M. V. Moscow State University, Moscow, Russia
| | - V A Zhuikov
- A. N. Bach Institute of Biochemistry, Federal Research Centre Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - D D Khaydapova
- The Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - D V Chesnokova
- Faculty of Biology, M. V. Moscow State University, Moscow, Russia
| | - K A Menshikh
- Faculty of Biology, M. V. Moscow State University, Moscow, Russia
| | - A A Dudun
- A. N. Bach Institute of Biochemistry, Federal Research Centre Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - T K Makhina
- A. N. Bach Institute of Biochemistry, Federal Research Centre Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - G A Bonartseva
- A. N. Bach Institute of Biochemistry, Federal Research Centre Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - A V Volkov
- The Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - T F Asfarov
- The Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - S Y Ivanov
- The Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - K V Shaitan
- Faculty of Biology, M. V. Moscow State University, Moscow, Russia
| | - A P Bonartsev
- Faculty of Biology, M. V. Moscow State University, Moscow, Russia
- A. N. Bach Institute of Biochemistry, Federal Research Centre Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Zhuikov VA, Akoulina EA, Chesnokova DV, Wenhao Y, Makhina TK, Demyanova IV, Zhuikova YV, Voinova VV, Belishev NV, Surmenev RA, Surmeneva MA, Bonartseva GA, Shaitan KV, Bonartsev AP. The Growth of 3T3 Fibroblasts on PHB, PLA and PHB/PLA Blend Films at Different Stages of Their Biodegradation In Vitro. Polymers (Basel) 2020; 13:108. [PMID: 33383857 PMCID: PMC7795568 DOI: 10.3390/polym13010108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022] Open
Abstract
Over the past century there was a significant development and extensive application of biodegradable and biocompatible polymers for their biomedical applications. This research investigates the dynamic change in properties of biodegradable polymers: poly(3-hydroxybutyrate (PHB), poly-l-lactide (PLA), and their 50:50 blend (PHB/PLA)) during their hydrolytic non-enzymatic (in phosphate buffered saline (PBS), at pH = 7.4, 37 °C) and enzymatic degradation (in PBS supplemented with 0.25 mg/mL pancreatic lipase). 3T3 fibroblast proliferation on the polymer films experiencing different degradation durations was also studied. Enzymatic degradation significantly accelerated the degradation rate of polymers compared to non-enzymatic hydrolytic degradation, whereas the seeding of 3T3 cells on the polymer films accelerated only the PLA molecular weight loss. Surprisingly, the immiscible nature of PHB/PLA blend (showed by differential scanning calorimetry) led to a slower and more uniform enzymatic degradation in comparison with pure polymers, PHB and PLA, which displayed a two-stage degradation process. PHB/PLA blend also displayed relatively stable cell viability on films upon exposure to degradation of different durations, which was associated with the uneven distribution of cells on polymer films. Thus, the obtained data are of great benefit for designing biodegradable scaffolds based on polymer blends for tissue engineering.
Collapse
Affiliation(s)
- Vsevolod A. Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (V.A.Z.); (T.K.M.); (Y.V.Z.); (G.A.B.)
| | - Elizaveta A. Akoulina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (D.V.C.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Dariana V. Chesnokova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (D.V.C.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - You Wenhao
- Biological Faculty, Shenzhen MSU-BIT University, No.299, Ruyi Road, Longgang District, Shenzhen 518172, China; (Y.W.); (I.V.D.)
| | - Tatiana K. Makhina
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (V.A.Z.); (T.K.M.); (Y.V.Z.); (G.A.B.)
| | - Irina V. Demyanova
- Biological Faculty, Shenzhen MSU-BIT University, No.299, Ruyi Road, Longgang District, Shenzhen 518172, China; (Y.W.); (I.V.D.)
| | - Yuliya V. Zhuikova
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (V.A.Z.); (T.K.M.); (Y.V.Z.); (G.A.B.)
| | - Vera V. Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (D.V.C.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Nikita V. Belishev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (D.V.C.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Roman A. Surmenev
- National Research Tomsk Polytechnic University, Lenin Ave, 30, 634050 Tomsk, Russia; (R.A.S.); (M.A.S.)
| | - Maria A. Surmeneva
- National Research Tomsk Polytechnic University, Lenin Ave, 30, 634050 Tomsk, Russia; (R.A.S.); (M.A.S.)
| | - Garina A. Bonartseva
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave, 33, Bld. 2, 119071 Moscow, Russia; (V.A.Z.); (T.K.M.); (Y.V.Z.); (G.A.B.)
| | - Konstantin V. Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (D.V.C.); (V.V.V.); (N.V.B.); (K.V.S.)
| | - Anton P. Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (E.A.A.); (D.V.C.); (V.V.V.); (N.V.B.); (K.V.S.)
| |
Collapse
|
9
|
Volkov AV, Muraev AA, Zharkova II, Voinova VV, Akoulina EA, Zhuikov VA, Khaydapova DD, Chesnokova DV, Menshikh KA, Dudun AA, Makhina TK, Bonartseva GA, Asfarov TF, Stamboliev IA, Gazhva YV, Ryabova VM, Zlatev LH, Ivanov SY, Shaitan KV, Bonartsev AP. Poly(3-hydroxybutyrate)/hydroxyapatite/alginate scaffolds seeded with mesenchymal stem cells enhance the regeneration of critical-sized bone defect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:110991. [PMID: 32994018 DOI: 10.1016/j.msec.2020.110991] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/08/2020] [Accepted: 04/18/2020] [Indexed: 01/13/2023]
Abstract
A critical-sized calvarial defect in rats is employed to reveal the osteoinductive properties of biomaterials. In this study, we investigate the osteogenic efficiency of hybrid scaffolds based on composites of a biodegradable and biocompatible polymer, poly(3-hydroxybutyrate) (PHB) with hydroxyapatite (HA) filled with alginate (ALG) hydrogel containing mesenchymal stem cells (MSCs) on the regeneration of the critical-sized radial defect of the parietal bone in rats. The scaffolds based on PHB and PHB/HA with desired shapes were prepared by two-stage salt leaching technique using a mold obtained by three-dimensional printing. To obtain PHB/HA/ALG/MSC scaffolds seeded with MSCs, the scaffolds were filled with ALG hydrogel containing MSCs; acellular PHB/ALG and PHB/ALG filled with empty ALG hydrogel were prepared for comparison. The produced scaffolds have high porosity and irregular interconnected pore structure. PHB/HA scaffolds supported MSC growth and induced cell osteogenic differentiation in a regular medium in vitro that was manifested by an increase in ALP activity and expression of the CD45 phenotype marker. The data of computed tomography and histological studies showed 94% and 92%, respectively, regeneration of critical-sized calvarial bone defect in vivo at 28th day after implantation of MSC-seeded PHB/HA/ALG/MSC scaffolds with 3.6 times higher formation of the main amount of bone tissue at 22-28 days in comparison with acellular PHB/HA/ALG scaffolds that was shown at the first time by fluorescent microscopy using the original technique of intraperitoneal administration of fluorescent dyes to living postoperative rats. The obtained in vivo results can be associated with the MSC-friendly microstructure and in vitro osteogenic properties of PHB/HA base-scaffolds. Thus, the obtained data demonstrate the potential of MSCs encapsulated in the bioactive biopolymer/mineral/hydrogel scaffold to improve the bone regeneration process in critical-sized bone defects.
Collapse
Affiliation(s)
- Alexey V Volkov
- The Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia; N.N. Priorov National Medical Research Center of Traumatology and Orthopedics of the Ministry of Health of the Russian Federation, Priorova Str. 10, 127299 Moscow, Russia
| | - Alexander A Muraev
- The Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. 8/2, 119991, Moscow, Russia
| | - Irina I Zharkova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia
| | - Vera V Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia; A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia
| | - Elizaveta A Akoulina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia; A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia
| | - Vsevolod A Zhuikov
- A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia
| | - Dolgor D Khaydapova
- Faculty of Soil Science, M.V.Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, 119234 Moscow, Russia
| | - Dariana V Chesnokova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia
| | - Ksenia A Menshikh
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia
| | - Andrej A Dudun
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia; A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia
| | - Tatiana K Makhina
- A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia
| | - Garina A Bonartseva
- A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia
| | - Teymur F Asfarov
- The Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Ivan A Stamboliev
- The Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Yulia V Gazhva
- Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Valentina M Ryabova
- Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, Minin and Pozharsky Sq. 10/1, 603005 Nizhny Novgorod, Russia
| | - Lubomir H Zlatev
- The Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Sergey Y Ivanov
- The Peoples' Friendship University of Russia, Miklukho-Maklaya St. 6, 117198 Moscow, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. 8/2, 119991, Moscow, Russia
| | - Konstantin V Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia
| | - Anton P Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1, bld. 12, 119234 Moscow, Russia; A.N.Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia.
| |
Collapse
|
10
|
Dudun AA, Akoulina EA, Voinova VV, Makhina TK, Myshkina VL, Zhuikov VA, Bonartsev AP, Bonartseva GA. Biosynthesis of Alginate and Poly(3-Hydroxybutyrate) by the Bacterial Strain Azotobacter agile 12. APPL BIOCHEM MICRO+ 2019; 55:654-659. [DOI: 10.1134/s0003683819060073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/31/2019] [Accepted: 06/20/2019] [Indexed: 01/11/2025]
|
11
|
Voinova V, Bonartseva G, Bonartsev A. Effect of poly(3-hydroxyalkanoates) as natural polymers on mesenchymal stem cells. World J Stem Cells 2019; 11:764-786. [PMID: 31692924 PMCID: PMC6828591 DOI: 10.4252/wjsc.v11.i10.764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/17/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are stromal multipotent stem cells that can differentiate into multiple cell types, including fibroblasts, osteoblasts, chondrocytes, adipocytes, and myoblasts, thus allowing them to contribute to the regeneration of various tissues, especially bone tissue. MSCs are now considered one of the most promising cell types in the field of tissue engineering. Traditional petri dish-based culture of MSCs generate heterogeneity, which leads to inconsistent efficacy of MSC applications. Biodegradable and biocompatible polymers, poly(3-hydroxyalkanoates) (PHAs), are actively used for the manufacture of scaffolds that serve as carriers for MSC growth. The growth and differentiation of MSCs grown on PHA scaffolds depend on the physicochemical properties of the polymers, the 3D and surface microstructure of the scaffolds, and the biological activity of PHAs, which was discovered in a series of investigations. The mechanisms of the biological activity of PHAs in relation to MSCs remain insufficiently studied. We suggest that this effect on MSCs could be associated with the natural properties of bacteria-derived PHAs, especially the most widespread representative poly(3-hydroxybutyrate) (PHB). This biopolymer is present in the bacteria of mammalian microbiota, whereas endogenous poly(3-hydroxybutyrate) is found in mammalian tissues. The possible association of PHA effects on MSCs with various biological functions of poly(3-hydroxybutyrate) in bacteria and eukaryotes, including in humans, is discussed in this paper.
Collapse
Affiliation(s)
- Vera Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Garina Bonartseva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Anton Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|
12
|
Bonartsev AP, Voinova VV, Bonartseva GA. Poly(3-hydroxybutyrate) and Human Microbiota (Review). APPL BIOCHEM MICRO+ 2018; 54:547-568. [DOI: 10.1134/s0003683818060066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 01/11/2025]
|
13
|
Bonartsev AP, Voinova VV, Kuznetsova ES, Zharkova II, Makhina TK, Myshkina VL, Chesnokova DV, Kudryashova KS, Feofanov AV, Shaitan KV, Bonartseva GA. BSA Adsorption on Porous Scaffolds Prepared from BioPEGylated Poly(3-Hydroxybutyrate). APPL BIOCHEM MICRO+ 2018; 54:379-386. [DOI: 10.1134/s0003683818040038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 01/11/2025]
|
14
|
Zhuikov VA, Bonartsev AP, Makhina TK, Myshkina VL, Voinova VV, Bonartseva GA, Shaitan KV. Hydrolytic Degradation of Poly(3-Hydroxybutyrate) and Its Copolymer with 3-Hydroxyvalerate of Different Molecular Weights in vitro. Biophysics (Nagoya-shi) 2018; 63:169-176. [DOI: 10.1134/s0006350918020288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/02/2017] [Indexed: 01/11/2025] Open
|
15
|
Pavlova ER, Bagrov DV, Kopitsyna MN, Shchelokov DA, Bonartsev AP, Zharkova II, Mahina TK, Myshkina VL, Bonartseva GA, Shaitan KV, Klinov DV. Poly(hydroxybutyrate‐ co‐hydroxyvalerate) and bovine serum albumin blend prepared by electrospinning. J Appl Polym Sci 2017; 134. [DOI: 10.1002/app.45090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
ABSTRACTElectrospinning is a method for the preparation of nanosized polymer fibers. Here, electrospinning is used to prepare a blend of a polyester, poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV), and a globular protein, bovine serum albumin (BSA). The electrospun blend film is compared with a solution‐cast blend film and with single‐component electrospun films made of PHBV and BSA. In the electrospun blend films, BSA manifests itself as flat ribbons and a fine network formed from fibers less than 50 nm in diameter. The dissolution rate of BSA from the electrospun blended film is lower than from the solution‐cast one. The films are characterized using scanning electron microscopy, differential scanning calorimetry, and contact‐angle measurements. The obtained PHBV+BSA blend films have several emergent properties: a slow BSA dissolution rate, a fine BSA network, and unusual thermal behavior. Thus, the PHBV+BSA blend films introduce a new class of polymer–protein blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45090.
Collapse
Affiliation(s)
- Elizaveta R. Pavlova
- Federal Research Clinical Center of Physical‐Chemical Medicine of the Federal Medical and Biological Agency of Russia 1a Malaya Pirogovskaya Street 119435 Moscow Russian Federation
- Moscow Institute of Physics and Technology 9 Institutsky Per. 141700 Dolgoprudny Moscow Region Russian Federation
| | - Dmitry V. Bagrov
- Federal Research Clinical Center of Physical‐Chemical Medicine of the Federal Medical and Biological Agency of Russia 1a Malaya Pirogovskaya Street 119435 Moscow Russian Federation
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University 119234 Leninskie gory, 1, Bld. 12 Moscow Russian Federation
| | - Maria N. Kopitsyna
- Bauman Moscow State Technical University 105005 2‐ya Baumanskaya Street, 5 Moscow Russian Federation
| | - Dmitry A. Shchelokov
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University 119234 Leninskie gory, 1, Bld. 12 Moscow Russian Federation
| | - Anton P. Bonartsev
- A. N. Bach Institute of Biochemistry RAS Leninsky Avenue, 33‐2 119071 Moscow Russian Federation
| | - Irina I. Zharkova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University 119234 Leninskie gory, 1, Bld. 12 Moscow Russian Federation
| | - Tatiana K. Mahina
- A. N. Bach Institute of Biochemistry RAS Leninsky Avenue, 33‐2 119071 Moscow Russian Federation
| | - Vera L. Myshkina
- A. N. Bach Institute of Biochemistry RAS Leninsky Avenue, 33‐2 119071 Moscow Russian Federation
| | - Galina A. Bonartseva
- A. N. Bach Institute of Biochemistry RAS Leninsky Avenue, 33‐2 119071 Moscow Russian Federation
| | - Konstantin V. Shaitan
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University 119234 Leninskie gory, 1, Bld. 12 Moscow Russian Federation
| | - Dmitry V. Klinov
- Federal Research Clinical Center of Physical‐Chemical Medicine of the Federal Medical and Biological Agency of Russia 1a Malaya Pirogovskaya Street 119435 Moscow Russian Federation
| |
Collapse
|
16
|
Feeding strategies for tuning poly (3-hydroxybutyrate-co-4-hydroxybutyrate) monomeric composition and productivity using Burkholderia sacchari. Int J Biol Macromol 2017; 105:825-833. [PMID: 28735003 DOI: 10.1016/j.ijbiomac.2017.07.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 01/22/2023]
Abstract
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-4HB)) co-polymers were produced at bench-scale in fed-batch cultivations by Burkholderia sacchari from glucose (main carbon-source) and gamma-butyrolactone (GBL) as co-substrate. As P(3HB-4HB) properties highly depend on the 4-hydroxybutyrate (4HB) molar fraction, it is advantageous to have a thorough knowledge of the process in order to promote the production of the targeted final product. In this work, polymers with a 4HB molar percentage ranging from 1.5 to 8.4% (mol/mol) were obtained as consequence of a fine tuning of the fed-batch operation conditions, namely regarding the co-substrate feeding rate and its addition time, as GBL is toxic to B. sacchari cells. The best results regarding both the 4HB incorporation (molar%) and the co-polymer productivity (7.1% and 1.1g/(L.h) respectively) were reached when a pulse of GBL (<10g/L) was added early in the accumulation phase followed by a constant GBL addition at a rate similar to that of consumption so that a steady co-substrate concentration in the medium was maintained.
Collapse
|
17
|
Zhuikov VA, Bonartsev AP, Bagrov DV, Yakovlev SG, Myshkina VL, Makhina TK, Bessonov IV, Kopitsyna MN, Morozov AS, Rusakov AA, Useinov AS, Shaitan KV, Bonartseva GA. Mechanics and surface ultrastructure changes of poly(3-hydroxybutyrate) films during enzymatic degradation in pancreatic lipase solution. MOLECULAR CRYSTALS AND LIQUID CRYSTALS 2017; 648:236-243. [DOI: 10.1080/15421406.2017.1302580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Affiliation(s)
- V. A. Zhuikov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Leninsky prospekt, 33, build. 2, Moscow, Russia
- Nizhny Novgorod State Medical Academy, 10/1 Minin & Pozharsky sq., Nizhny Novgorod, Russia
| | - A. P. Bonartsev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Leninsky prospekt, 33, build. 2, Moscow, Russia
- M.V. Lomonosov Moscow State University, Lenin hills, 1, build. 12, Moscow, Russia
- Nizhny Novgorod State Medical Academy, 10/1 Minin & Pozharsky sq., Nizhny Novgorod, Russia
| | - D. V. Bagrov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Leninsky prospekt, 33, build. 2, Moscow, Russia
| | - S. G. Yakovlev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Leninsky prospekt, 33, build. 2, Moscow, Russia
- Nizhny Novgorod State Medical Academy, 10/1 Minin & Pozharsky sq., Nizhny Novgorod, Russia
| | - V. L. Myshkina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Leninsky prospekt, 33, build. 2, Moscow, Russia
| | - T. K. Makhina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Leninsky prospekt, 33, build. 2, Moscow, Russia
| | - I. V. Bessonov
- Bauman Moscow State Technical University, 5, 2-nd Baumanskaya, Moscow, Russia
| | - M. N. Kopitsyna
- Bauman Moscow State Technical University, 5, 2-nd Baumanskaya, Moscow, Russia
| | - A. S. Morozov
- Bauman Moscow State Technical University, 5, 2-nd Baumanskaya, Moscow, Russia
| | - A. A. Rusakov
- Technological Institute for Superhard and Novel Carbon Materials, 7a Tsentralnaya street, Troitsk, Moscow, Russia
| | - A. S. Useinov
- Technological Institute for Superhard and Novel Carbon Materials, 7a Tsentralnaya street, Troitsk, Moscow, Russia
| | - K. V. Shaitan
- M.V. Lomonosov Moscow State University, Lenin hills, 1, build. 12, Moscow, Russia
| | - G. A. Bonartseva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Leninsky prospekt, 33, build. 2, Moscow, Russia
| |
Collapse
|