Elegbede JA, Lateef A, Gueguim-Kana EB, Beukes LS, Matyumza N. Multi-functional xylanase from
Aspergillus sydowii: biosynthesis of nanoconjugates, optimization by Taguchi approach and biodeinking potential.
Prep Biochem Biotechnol 2024;
54:622-636. [PMID:
37772603 DOI:
10.1080/10826068.2023.2261037]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The search for effective production of xylanase which is an important industrial enzyme led to the present study that explored xylanase production by Aspergillus sydowii SF through Taguchi optimization that incorporated nanoconjugates in submerged fermentation. Calcium and zinc oxide nanoconjugates biosynthesized by xylanase were characterized via UV-Vis spectroscopy, Fourier transform infrared spectroscopy, and Transmission electron microscopy (TEM). The xylanase-mediated calcium oxide and zinc oxide nanoconjugates with λmax of 374 and 316 nm, respectively, and were 5.32-17.69 nm in size. Xylanase production was improved by 2.90-10.58 folds (64.24-234.15 U/mL) through Taguchi optimization cum nanoconjugates, and ANOVA showed that nanoconjugates contributed 13.62-65.97% to improved production. The xylanase had up to 88.38% deinking activity, with 49.60-84.64% removal of blue color. The remarkable xylanase production, its use to biosynthesize nanoconjugates and biodeinking potentials contribute to the development of versatile biocatalysts with applications in biotechnology, nanotechnology, and sustainable paper production. To the best of our knowledge, this represents the first report of xylanase for biosynthesis of calcium oxide and zinc oxide nanoparticles, as well as nanosupplementation to induce xylanase production, which can open new vista in bioprocess optimization.
Collapse