1
|
Hu ZY, Wang WJ, Hu L, Shi JH, Jiang SL. Comprehending the intermolecular interaction of dacomitinib with bovine serum albumin: experimental and theoretical approaches. J Biomol Struct Dyn 2024; 42:3579-3592. [PMID: 37288787 DOI: 10.1080/07391102.2023.2218926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023]
Abstract
Dacomitinib (DAC), as a member of tyrosine kinase inhibitors is primarily used to treat non-small cell lung cancer. The intermolecular interaction between DAC and bovine serum albumin (BSA) was comprehended with the help of experiments and theoretical simulations. The outcomes indicated that DAC quenched the endogenous fluorescence of BSA through static quenching mode. In the binding process, DAC was preferentially inserted into the hydrophobic cavity of BSA subdomain IA (site III), and a fluorescence-free DAC-BSA complex with molar ratio of 1:1 was generated. The outcomes confirmed that DAC had a stronger affinity on BSA and the non-radiative energy transfer occurred in the combination process of two. And, it can be inferred from the outcomes of thermodynamic parameters and competition experiments with 8-aniline-1-naphthalenesulfonic acid (ANS) and D-(+)- sucrose that hydrogen bonds (H-bonds), van der Waals forces (vdW) and hydrophobic forces had a significant impact in inserting DAC into the hydrophobic cavity of BSA. The outcomes from multi-spectroscopic measurements that DAC could affect the secondary structure of BSA, that was, α-helix content decreased slightly from 51.0% to 49.7%. Moreover, the combination of DAC and BSA led to a reduction in the hydrophobicity of the microenvironment around tyrosine (Tyr) residues in BSA while had little influence on the microenvironment of around tryptophan (Trp) residues. The outcomes from molecular docking and molecular dynamics (MD) simulation further demonstrated the insertion of DAC into site III of BSA and hydrogen energy and van der Waals energy were the dominant energy of DAC-BSA stability. In addition, the influence of metal ions (Fe3+, Cu2+, Co2+, etc.) on the affinity of the system was explored.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zhe-Ying Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou, China
| | - Wan-Jun Wang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou, China
| | - Lu Hu
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou, China
| | - Jie-Hua Shi
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou, China
| | - Shao-Liang Jiang
- College of Pharmaceutic Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
2
|
Al-Shabib N, Khan JM, Al-Amri AM, Malik A, Husain FM, Sharma P, Emerson A, Kumar V, Sen P. Interaction Mechanism between α-Lactalbumin and Caffeic Acid: A Multispectroscopic and Molecular Docking Study. ACS OMEGA 2023; 8:19853-19861. [PMID: 37305235 PMCID: PMC10249380 DOI: 10.1021/acsomega.3c01755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
Caffeic acid (CA) is a phenolic acid found in a variety of foods. In this study, the interaction mechanism between α-lactalbumin (ALA) and CA was explored with the use of spectroscopic and computational techniques. The Stern-Volmer quenching constant data suggest a static mode of quenching between CA and ALA, depicting a gradual decrease in quenching constants with temperature rise. The binding constant, Gibbs free energy, enthalpy, and entropy values at 288, 298, and 310 K were calculated, and the obtained values suggest that the reaction is spontaneous and exothermic. Both in vitro and in silico studies show that hydrogen bonding is the dominant force in the CA-ALA interaction. Ser112 and Lys108 of ALA are predicted to form three hydrogen bonds with CA. The UV-visible spectroscopy measurements demonstrated that the absorbance peak A280nm increased after addition of CA due to conformational change. The secondary structure of ALA was also slightly modified due to CA interaction. The circular dichroism (CD) studies showed that ALA gains more α-helical structure in response to increasing concentration of CA. The surface hydrophobicity of ALA is not changed in the presence of ethanol and CA. The present findings shown herein are helpful in understanding the binding mechanism of CA with whey proteins for the dairy processing industry and food nutrition security.
Collapse
Affiliation(s)
- Nasser
Abdulatif Al-Shabib
- College
of Food and Agriculture Sciences, Department of Food and Nutrition, King Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- College
of Food and Agriculture Sciences, Department of Food and Nutrition, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz M. Al-Amri
- College
of Science, Department of Biochemistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajamaluddin Malik
- College
of Science, Department of Biochemistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fohad Mabood Husain
- College
of Food and Agriculture Sciences, Department of Food and Nutrition, King Saud University, Riyadh 11451, Saudi Arabia
| | - Prerna Sharma
- Geisinger
Commonwealth School of Medicine, Scranton, Pennsylvania 18509-3240, United States
| | - Arnold Emerson
- Department
of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu 632014, India
| | - Vijay Kumar
- Himalayan
School of Biosciences, Swami Rama Himalayan
University, Dehradun, Uttarakhand 248016, India
| | - Priyankar Sen
- Centre for
Bioseparation Technology, VIT University, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
3
|
Chen J, Bian X, Zhang S, Yang G. Study on the interaction of two quinazoline derivatives as novel PI3K/mTOR dual inhibitors and anticancer agents to human serum albumin utilizing spectroscopy and docking. LUMINESCENCE 2023; 38:260-268. [PMID: 36648974 DOI: 10.1002/bio.4444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/25/2022] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Interactions of human serum albumin (HSA) with two structurally similar quinazoline derivatives, S1 and S2 , which are potential anticancer drugs acting on PI3K/mTOR targets, were investigated in vitro utilizing multiple spectroscopy as well as molecular docking. The fluorescence quenching study demonstrated that HSA fluorescence could be statically quenched by S1 and S2 through the formation of an HSA-drug complex. Furthermore, the details of the binding site number, binding constant, as well as the thermodynamic parameters, were estimated at 298, 303, and 310 K. The results revealed that hydrogen bond interactions, as well as van der Waals forces, were the predominant factors responsible for binding HSA to S1 or S2 . Synchronous fluorescence and ultraviolet (UV) absorption spectra suggested that S1 and S2 had little effect on the polarity of the microenvironment and conformation of HSA. Energy transfer from HSA to S1 or S2 most probably occurred. The docking study revealed that S1 and S2 were able to bind to the hydrophobic cavity that was located in the HSA subdomain IIA and formed varying numbers of hydrogen bonds with amino acid residues nearby. Due to the subtle difference in the chemical structure, the binding of S1 and S2 to HSA was slightly different.
Collapse
Affiliation(s)
- Jiangang Chen
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiaoli Bian
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Sanqi Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Guangde Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
4
|
Probing the molecular toxic mechanism of di-(2-ethylhexyl) phthalate with glutathione transferase Phi8 from Arabidopsis thaliana. Int J Biol Macromol 2020; 145:165-172. [DOI: 10.1016/j.ijbiomac.2019.12.148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
|
5
|
Novel BTK inhibitor acalabrutinib (ACP-196) tightly binds to site I of the human serum albumin as observed by spectroscopic and computational studies. Int J Biol Macromol 2019; 127:536-543. [DOI: 10.1016/j.ijbiomac.2019.01.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/27/2022]
|
6
|
Kallubai M, Reddy SP, Dubey S, Ramachary DB, Subramanyam R. Spectroscopic evaluation of synthesized 5β-dihydrocortisol and 5β-dihydrocortisol acetate binding mechanism with human serum albumin and their role in anticancer activity. J Biomol Struct Dyn 2018; 37:623-640. [PMID: 29375009 DOI: 10.1080/07391102.2018.1433554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our study focus on the biological importance of synthesized 5β-dihydrocortisol (Dhc) and 5β-dihydrocortisol acetate (DhcA) molecules, the cytotoxic study was performed on breast cancer cell line (MCF-7) normal human embryonic kidney cell line (HEK293), the IC50 values for MCF-7 cells were 28 and 25 μM, respectively, whereas no toxicity in terms of cell viability was observed with HEK293 cell line. Further experiment proved that Dhc and DhcA induced 35.6 and 37.7% early apoptotic cells and 2.5, 2.9% late apoptotic cells, respectively, morphological observation of cell death through TUNEL assay revealed that Dhc and DhcA induced apoptosis in MCF-7 cells. The complexes of HSA-Dhc and HSA-DhcA were observed as static quenching, and the binding constants (K) was 4.7 ± .03 × 104 M-1 and 3.9 ± .05 × 104 M-1, and their binding free energies were found to be -6.4 and -6.16 kcal/mol, respectively. The displacement studies confirmed that lidocaine 1.4 ± .05 × 104 M-1 replaced Dhc, and phenylbutazone 1.5 ± .05 × 104 M-1 replaced by DhcA, which explains domain I and domain II are the binding sites for Dhc and DhcA. Further, FT-IR, synchronous spectroscopy, and CD results revealed that the secondary structure of HSA was altered in the presence of Dhc and DhcA. Furthermore, the atomic force microscopy and transmission electron microscopy showed that the dimensions like height and molecular size of the HSA-Dhc and HSA-DhcA complex were larger compared to HSA alone. Detailed analysis through molecular dynamics simulations also supported greater stability of HSA-Dhc and HSA-DhcA complexes, and root-mean-square-fluctuation interpreted the binding site of Dhc as domain IB and domain IIA for DhcA. This information is valuable for further development of steroid derivative with improved pharmacological significance as novel anti-cancer drugs.
Collapse
Affiliation(s)
- Monika Kallubai
- a Department of Plant Sciences, School of Life Sciences , University of Hyderabad , Hyderabad 500046 , India
| | - Srinivasa P Reddy
- b Catalysis Laboratory, School of Chemistry , University of Hyderabad , Hyderabad 500046 , India
| | - Shreya Dubey
- a Department of Plant Sciences, School of Life Sciences , University of Hyderabad , Hyderabad 500046 , India
| | - Dhevalapally B Ramachary
- b Catalysis Laboratory, School of Chemistry , University of Hyderabad , Hyderabad 500046 , India
| | - Rajagopal Subramanyam
- a Department of Plant Sciences, School of Life Sciences , University of Hyderabad , Hyderabad 500046 , India
| |
Collapse
|
7
|
Nusrat S, Khan RH. Exploration of ligand-induced protein conformational alteration, aggregate formation, and its inhibition: A biophysical insight. Prep Biochem Biotechnol 2018; 48:43-56. [PMID: 29106330 DOI: 10.1080/10826068.2017.1387561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The association of protein aggregates with plentiful human diseases has fascinated studies regarding the biophysical characterization of protein misfolding and ultimately their aggregate formation mechanism. Protein-ligand interaction, their mechanism, conformational changes by ligands, and protein aggregate formation have been studied upon exploiting experimental techniques and computational methodologies. Such studies for the exploration of ligand-induced conformational changes in protein, misfolding and aggregation, has confirmed drastic progresses in the study of aggregate formation pathways. This review comprises of an inclusive description of contemporary experimental techniques as well as theoretical improvements in the interpretation of the conformational properties of protein. We have also discussed various factors responsible for the microenvironment change around protein that sequentially causes amyloidoses. Biophysical techniques and cell-based assays to gain comprehensive understandings of protein-ligand interaction, protein folding, and aggregation pathways have also been described. The promising therapeutic methods used to inhibit the protein fibrillogenesis have also been discussed.
Collapse
Affiliation(s)
- Saima Nusrat
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh , Uttar Pradesh , India
| | - Rizwan Hasan Khan
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh , Uttar Pradesh , India
| |
Collapse
|