1
|
Li T, Yang J, Tan Y, Yue Y, Sun Z, Han M, Peng P, Chen Q. Promoting Catalytic Performance Involving Hydrogen Spillover by Ion Exchange of Pt@A Catalysts to Regulate Reactant Adsorption. Inorg Chem 2024; 63:5120-5131. [PMID: 38456407 DOI: 10.1021/acs.inorgchem.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Zeolite-encapsulated metal nanoparticle systems have exhibited interesting catalytic performances via the hydrogen spillover process, yet how to further utilize the function of zeolite supports to promote catalytic properties in such a process is still challenging and has rarely been investigated. Herein, to address this issue, the strategy to strengthen the adsorption energy of reactant onto the zeolite surface via a simple ion exchange method has been implemented. Ion-exchanged linde type A (LTA) zeolite-encapsulated platinum nanoclusters (Pt@NaA, Pt@HA, Pt@KA, and Pt@CaA) were prepared to study the influence of ion exchange on the catalytic performance in the model reaction of hydrogenation of acetophenone to 1-phenylethanol. The reaction results showed that the Pt@CaA catalyst exhibited the best catalytic activity in the series of encapsulated catalysts, and the selectivity of 1-phenylethanol approached 100%. As revealed by density functional theory (DFT) calculations and acetophenone temperature-programmed desorption (acetophenone-TPD) experiments, in comparison with introduced cations of Na+, H+, and K+, ion-exchanged Ca2+ on the zeolite maximumly enhanced the adsorption of carbonyl groups in acetophenone, playing a critical role in achieving the highest activity and excellent catalytic selectivity among the Pt@A catalysts.
Collapse
Affiliation(s)
- Tianhao Li
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Jing Yang
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Yaozong Tan
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Yaning Yue
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Zongyu Sun
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Mengxi Han
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Pai Peng
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Qiang Chen
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| |
Collapse
|
2
|
Bolubaid M, Özdemir A, Dertli E, Alamoudi M, Taylan O, Karaboğa D, Yılmaz MT, Şahin E. Optimization of asymmetric bioreduction conditions of 1-(thiophen-2-yl)ethanone by Weissella cibaria N9 using a desirability function-embedded face-centered optimization model. Prep Biochem Biotechnol 2023; 53:1254-1262. [PMID: 36876855 DOI: 10.1080/10826068.2023.2185898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Prochiral ketones can be effectively bio-reduced to chiral secondary alcohols by whole-cell biocatalysts, which are possible useful precursors to synthesize physiologically active chemicals and natural products. When whole-cell biocatalysts strains are used, bioreduction process can be influenced by various cultural factors, and it is vital to optimize these factors that affect selectivity, conversion rate, and yield. In this study, Weissella cibaria N9 was used as whole-cell biocatalyst for bioreduction of 1-(thiophen-2-yl)ethanone, and cultural design factors were optimized using a desirability function-embedded face-centered optimization model. For this, effects of pH (4.5-5.5-6.5, x1), (2) temperature (25-30-35 °C, x2), (3) incubation period (24-48-72 h, x3), and (4) agitation speed (100-150-200 rpm, x4) on two response variables; (1) ee (%) and (2) cr (%) were tested. Next, desirability function-embedded face-centered optimization model revealed that a pH of 6.43, a temperature of 26.04 °C, an incubation period of 52.41 h, and an agitation speed of 150 rpm were the optimum levels and the estimated ee and cr responses were 99.31% and 98.16%, respectively. Importantly, the actual experimental ee and cr responses were similar to the estimated values indicating the capability of the offered desirability function-embedded face-centered optimization model when using the optimum cultural conditions.
Collapse
Affiliation(s)
- Mohammed Bolubaid
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Akın Özdemir
- Department of Industrial Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, Türkiye
| | - Enes Dertli
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul, Türkiye
| | - Mohammed Alamoudi
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osman Taylan
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Derviş Karaboğa
- Computer Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Türkiye
| | - Mustafa Tahsin Yılmaz
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Engin Şahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bayburt University, Bayburt, Turkiye
| |
Collapse
|
3
|
Kavi M, Özdemir A, Dertli E, Şahin E. Optimization of Biocatalytic Production of Enantiopure (S)-1-(4-Methoxyphenyl) Ethanol with Lactobacillus senmaizuke Using the Box–Behnken Design-Based Model. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Designing a Solar Photovoltaic System for Generating Renewable Energy of a Hospital: Performance Analysis and Adjustment Based on RSM and ANFIS Approaches. MATHEMATICS 2021. [DOI: 10.3390/math9222929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the most favorable renewable energy sources, solar photovoltaic (PV) can meet the electricity demand considerably. Sunlight is converted into electricity by the solar PV systems using cells containing semiconductor materials. A PV system is designed to meet the energy needs of King Abdulaziz University Hospital. A new method has been introduced to find optimal working capacity, and determine the self-consumption and sufficiency rates of the PV system. Response surface methodology (RSM) is used for determining the optimal working conditions of PV panels. Similarly, an adaptive neural network based fuzzy inference system (ANFIS) was employed to analyze the performance of solar PV panels. The outcomes of methods were compared to the actual outcomes available for testing the performance of models. Hence, for a 40 MW target PV system capacity, the RSM determined that approximately 33.96 MW electricity can be produced, when the radiation rate is 896.3 W/m2, the module surface temperature is 41.4 °C, the outdoor temperature is 36.2 °C, the wind direction and speed are 305.6 and 6.7 m/s, respectively. The ANFIS model (with nine rules) gave the highest performance with lowest residual for the same design parameters. Hence, it was determined that the hourly electrical energy requirement of the hospital can be met by the PV system during the year.
Collapse
|
5
|
Çolak NS, Kalay E, Şahin E. Asymmetric reduction of prochiral aromatic and hetero aromatic ketones using whole-cell of Lactobacillus senmaizukei biocatalyst. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1931337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Nida Sezin Çolak
- Faculty of Engineering, Department of Food Engineering, Bayburt University, Bayburt, Turkey
| | - Erbay Kalay
- Kars Vocational School, Kafkas University, Kars, Turkey
| | - Engin Şahin
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Bayburt University, Bayburt, Turkey
| |
Collapse
|
6
|
Özdemir A, Dertli E, Şahin E. Optimization of asymmetric reduction conditions of 1-(benzo [d] [1,3] dioxol-5-yl) ethanone by Lactobacillus fermentum P1 using D-optimal experimental design-based model. Prep Biochem Biotechnol 2021; 52:218-225. [PMID: 34028336 DOI: 10.1080/10826068.2021.1925913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The biocatalytic asymmetric reduction of prochiral ketones is a significant transformation in organic chemistry as chiral carbinols are biologically active molecules and may be used as precursors of many drugs. In this study, the bioreduction of 1-(benzo [d] [1,3] dioxol-5-yl) ethanone for the production of enantiomerically pure (S)-1-(1,3-benzodioxal-5-yl) ethanol was investigated using freeze-dried whole-cell of Lactobacillus fermentum P1 and the reduction conditions was optimized with a D-optimal experimental design-based optimization methodology. This is the first study using this optimization methodology in a biocatalytic asymmetric reduction. Using D-optimal experimental design-based optimization, optimum reaction conditions were predicted as pH 6.20, temperature 30 °C, incubation time 30 h, and agitation speed 193 rpm. For these operating conditions, it was estimated that the product could be obtained with 94% enantiomeric excess (ee) and 95% conversion rate (cr). Besides, the actual ee and cr were found to be 99% tested under optimized reaction conditions. These findings demonstrated that L. fermentum P1 as an effective biocatalyst to obtain (S)-1-(1,3-benzodioxal-5-yl) ethanol and with the D-optimal experimental design-based optimization, this product could be obtained with the 99% ee and 99% cr. Finally, the proposed mathematical optimization technique showed the applicability of the obtained results for asymmetric reduction reactions.
Collapse
Affiliation(s)
- Akın Özdemir
- Faculty of Engineering, Industrial Engineering Department, Ondokuz Mayıs University, Samsun, Turkey
| | - Enes Dertli
- Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Yildiz Technical University, Yildiz, Istanbul
| | - Engin Şahin
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Bayburt University, Bayburt, Turkey
| |
Collapse
|
7
|
Jothi S, Vuppu S. Taguchi analysis and asymmetric keto-reduction of acetophenone and its derivatives by soil filamentous fungal isolate: Penicillium rubens VIT SS1. Prep Biochem Biotechnol 2020; 50:1042-1052. [PMID: 32633606 DOI: 10.1080/10826068.2020.1786697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Microbial asymmetric reduction of ketone is an efficient tool for the synthesis of chiral alcohols. This research focuses on exploring the soil fungal isolates for their ability toward the keto reduction of acetophenone and its derivatives to their corresponding chiral alcohols using growing cells. Bioreduction of acetophenone, 4-fluoro acetophenone, 4-methyl acetophenone, and 3-hydroxy acetophenone was carried out using different fungal cultures isolated from soil. Among the fungal isolates, Penicillium sp. and Aspergillus sp. showed significant bioconversion with varying enantio-selectivity. However, the Penicillium sp. has shown the maximum ability of bioreduction. The potential isolate was characterized using the internal transcribed spacer (ITS) region and found to be Penicillium rubens VIT SS1 (Genbank accession number: MK063869.1), which showed higher conversion and selectivity > 90%. The biocatalyst production and the reaction conditions were optimized using Taguchi analysis. The process conditions such as pH, temperature, media components, cosolvent, and substrate dosing were evaluated for the bioreduction of 3-hydroxy acetophenone, which is a key chiral intermediate of Phenylephrine and Rivastigmine using P. rubens VIT SS1. This study concludes about the potential of fungal cultures for sustainable synthesis of key chiral intermediates of Phenylephrine and Rivastigmine, similarly many aromatic chiral alcohols in simpler, novel, and cost-effective manner.
Collapse
Affiliation(s)
- Saravanan Jothi
- School of Biosciences and Technology, VIT University, Vellore, India.,R&D, Iosynth Labs Private Limited, Bangalore, India
| | - Suneetha Vuppu
- School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|