1
|
Abedanzadeh S, Ariaeenejad S, Karimi B, Moosavi-Movahedi AA. Revolutionizing protein hydrolysis in wastewater: Innovative immobilization of metagenome-derived protease in periodic mesoporous organosilica with imidazolium framework. Int J Biol Macromol 2024; 278:134966. [PMID: 39179065 DOI: 10.1016/j.ijbiomac.2024.134966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
This research focused on utilizing periodic mesoporous organosilica with imidazolium framework (PMO-IL), to immobilize a metagenome-sourced protease (PersiProtease1), thereby enhancing its functional efficiency and catalytic effectiveness in processing primary proteins found in tannery wastewater. The successful immobilization of enzyme was confirmed through the use of N2 adsorption-desorption experiment, XRD, FTIR, TEM, FESEM, EDS and elemental analytical techniques. The immobilized enzyme exhibited greater stability in the presence of various metal ions and inhibitors compared to its free form. Furthermore, enzyme binding to PMO-IL nanoparticles (NPs) reduced leaching, evidenced by only 11.41 % of enzyme leakage following a 120-min incubation at 80 °C and 6.99 % after 240 min at 25 °C. Additionally, PersiPro@PMO-IL maintained impressive operational consistency, preserving 62.24 % of its activity over 20 cycles. It also demonstrated notable stability under saline conditions, with an increase of 1.5 times compared to the free enzyme in the presence of 5 M NaCl. The rate of collagen hydrolysis by the immobilized protease was 46.82 % after a 15-minute incubation at 60 °C and marginally decreased to 39.02 % after 20 cycles indicative of sustained efficacy without significant leaching throughout the cycles. These findings underscore the effectiveness of PMO-IL NPs as a viable candidate for treating wastewater containing protein.
Collapse
Affiliation(s)
| | - Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Babak Karimi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, Zanjan 45137-66731, Iran; Research Center for Basic Science & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | | |
Collapse
|
2
|
Cadar E, Pesterau AM, Prasacu I, Ionescu AM, Pascale C, Dragan AML, Sirbu R, Tomescu CL. Marine Antioxidants from Marine Collagen and Collagen Peptides with Nutraceuticals Applications: A Review. Antioxidants (Basel) 2024; 13:919. [PMID: 39199165 PMCID: PMC11351696 DOI: 10.3390/antiox13080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Collagen peptides and marine collagen are enormous resources currently utilized. This review aims to examine the scientific literature to determine which collagen peptides derived from marine sources and which natural active antioxidants from marine collagen have significant biological effects as health-promoting nutraceuticals. Marine collagen is extracted from both vertebrate and invertebrate marine creatures. For vertebrates, this includes fish skin, bones, scales, fins, and cartilage. For invertebrates, it includes mollusks, echinoderms, crustaceans, and poriferans. The method used involved data analysis to organize information for isolating and identifying marine biocompounds with antioxidant properties. Specifically, amino acids with antioxidant properties were identified, enabling the use of hydrolysates and collagen peptides as natural antioxidant nutraceuticals. The methods of extraction of hydrolyzed collagen and collagen peptides by different treatments are systematized. The structural characteristics of collagen, collagen peptides, and amino acids in fish skin and by-products, as well as in invertebrate organisms (jellyfish, mollusks, and crustaceans), are described. The antioxidant properties of different methods of collagen hydrolysates and collagen peptides are systematized, and the results are comparatively analyzed. Their use as natural antioxidant nutraceuticals expands the range of possibilities for the exploitation of natural resources that have not been widely used until now.
Collapse
Affiliation(s)
- Emin Cadar
- Faculty of Pharmacy, “Ovidius” University of Constanta, Capitan Aviator Al. Serbanescu Street, No. 6, Campus, Building C, 900470 Constanta, Romania;
| | - Ana-Maria Pesterau
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Irina Prasacu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, Traian Vuia Street, No. 6, Sector 2, 020021 Bucharest, Romania;
| | - Ana-Maria Ionescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- Clinical Hospital C F Constanta, 1 Mai Bvd., No. 3–5, 900123 Constanta, Romania
| | - Carolina Pascale
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Ana-Maria Laura Dragan
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Rodica Sirbu
- Organizing Institution for Doctoral University Studies of “Carol Davila”, University of Medicine and Pharmacy of Bucharest, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania; (A.-M.P.); (C.P.); (A.-M.L.D.)
| | - Cezar Laurentiu Tomescu
- Faculty of Medicine, “Ovidius” University of Constanta, University Alley, No. 1, Campus, Building B, 900470 Constanta, Romania;
- “Sf. Ap. Andrei” County Clinical Emergency Hospital, Bvd. Tomis, No. 145, 900591 Constanta, Romania
| |
Collapse
|
3
|
Kumari S, Pandey A, Soni A, Mahala A, Kumar A, Dey K. Assessment of functional efficacy of sheep plasma protein hydrolysates and their utilization in mutton sausage. Meat Sci 2024; 212:109469. [PMID: 38428152 DOI: 10.1016/j.meatsci.2024.109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/02/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
The present study examines the bioactive potential of sheep plasma protein hydrolysates (SPPH) produced by in-vitro gastrointestinal digestion as antioxidants, antimicrobials, anti-obesity agents, and inhibitors of lipid oxidation in sausage to address the oxidative stability and shelf-life issues of mutton. The antioxidant and antimicrobial activities, indicate a positive relationship between the degree of hydrolysis and digestion duration. The study finds that SPPH has a potent inhibitory effect on pancreatic lipase and cholesterol esterase. It has higher oil holding capacity than sheep plasma protein, observed at one hour of hydrolysis time. SPPH exhibit an improved behavior in foaming properties along alkaline pH and digestion time while display lower emulsifying activity and stability with hydrolysis advancement. The SPPH act as a natural preservative in developing functional mutton sausage by inhibiting lipid-oxidation. This study showed that the recovery of SPPH can be a cost-effective and sustainable strategy for generating available ingredients for enhanced shelf-life of meat products.
Collapse
Affiliation(s)
- Sarita Kumari
- Department of Livestock Products Technology, Post- Graduate Institute of Veterinary Education & Research, Rajasthan University of Veterinary and Animal Science, Rajasthan 334001, India
| | - Anurag Pandey
- Department of Livestock Products Technology, Post- Graduate Institute of Veterinary Education & Research, Rajasthan University of Veterinary and Animal Science, Rajasthan 334001, India.
| | - Arvind Soni
- Section of Livestock Products Technology, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan 304501, India
| | - Anurag Mahala
- Division of Animal Genetics Breeding, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan 304501, India
| | - Arun Kumar
- Division of Animal Genetics Breeding, ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan 304501, India
| | - Kushankur Dey
- Centre for Food & Agri-business Management, Indian Institute of Management, Lucknow, Uttar Pradesh 226013, India.
| |
Collapse
|
4
|
Barzkar N, Bunphueak P, Chamsodsai P, Muangrod P, Thumthanaruk B, Rungsardthong V, Tabtimmai L. Jellyfish protein hydrolysates: Multifunctional bioactivities unveiled in the battle against diabetes, inflammation, and bacterial pathogenesis. Microb Pathog 2024; 191:106648. [PMID: 38641070 DOI: 10.1016/j.micpath.2024.106648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
This study investigates the multifunctional bioactivities of pepsin-hydrolyzed jellyfish by-products (Rhopilema hispidum and Lobonema smithii), focusing on their anti-α-glucosidase activity, anti-inflammatory effects, anti-bacterial properties, and ability to inhibit biofilm formation of Staphylococcus aureus. Our findings revealed that jellyfish protein hydrolysates, particularly from Rhopilema hispidum, exhibit significant anti-α-glucosidase activity, surpassing the well-known α-glucosidase inhibitor Acarbose. Furthermore, we demonstrated the anti-inflammatory capabilities of these hydrolysates in suppressing lipopolysaccharide (LPS)-induced nitric oxide production in murine macrophage cells. This effect was dose-dependent and non-cytotoxic, highlighting the hydrolysate potential in treating inflammation-related conditions. Regarding anti-bacterial activity, pepsin-hydrolyzed jellyfish selectively exhibited a potent effect against S. aureus, including Methicillin-susceptible and Methicillin-resistant strains. This activity was evident at minimum inhibitory concentrations (MIC) of 25 μg/mL for S. aureus ATCC10832, while a modest effect was observed against other Gram-positive strains. The hydrolysates effectively delayed bacterial growth dose-dependently, suggesting their use as alternative agents against bacterial infections. Most notably, pepsin-hydrolyzed jellyfish showed significant anti-biofilm activity against S. aureus. The umbrella section hydrolysate of Rhopilema hispidum was particularly effective, reducing biofilm formation through downregulating the icaA gene, crucial for biofilm development. Furthermore, the hydrolysates modulated the expression of the agrA gene, a key regulator in the pathogenesis of S. aureus. In conclusion, pepsin-hydrolyzed jellyfish protein hydrolysates exhibit promising multifunctional bioactivities, including anti-diabetic, anti-inflammatory, antibacterial, and anti-biofilm properties. These findings suggest their potential application in pharmaceutical and nutraceutical fields, particularly in managing diabetic risks, inflammation, bacterial infections, and combating the biofilm-associated pathogenicity of S. aureus.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science King Mongkut's University of Technology North Bangkok, 10800, Thailand; Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, 10800, Thailand
| | - Pinchuta Bunphueak
- Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, 10800, Thailand; Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, 10800, Thailand
| | - Phumin Chamsodsai
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, 10800, Thailand
| | - Pratchaya Muangrod
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science King Mongkut's University of Technology North Bangkok, 10800, Thailand; Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, 10800, Thailand
| | - Benjawan Thumthanaruk
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science King Mongkut's University of Technology North Bangkok, 10800, Thailand; Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, 10800, Thailand
| | - Vilai Rungsardthong
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science King Mongkut's University of Technology North Bangkok, 10800, Thailand; Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, 10800, Thailand
| | - Lueacha Tabtimmai
- Food and Agro-Industrial Research Center, King Mongkut's University of Technology North Bangkok, 10800, Thailand; Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, 10800, Thailand.
| |
Collapse
|
5
|
Zhao Y, Zhang T, Ning Y, Wang D, Li F, Fan Y, Yao J, Ren G, Zhang B. Identification and molecular mechanism of novel tyrosinase inhibitory peptides from the hydrolysate of 'Fengdan' peony (Paeonia ostii) seed meal proteins: Peptidomics and in silico analysis. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Herawati E, Akhsanitaqwim Y, Agnesia P, Listyawati S, Pangastuti A, Ratriyanto A. In Vitro Antioxidant and Antiaging Activities of Collagen and Its Hydrolysate from Mackerel Scad Skin ( Decapterus macarellus). Mar Drugs 2022; 20:md20080516. [PMID: 36005519 PMCID: PMC9409949 DOI: 10.3390/md20080516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
The skin of mackerel scad fish (Decapterus macarellus) is a new source for pepsin-soluble collagen and its hydrolysate, both of which have never been explored. This study aims to characterize and determine the in vitro antioxidant, antiglycation, and antityrosinase activity of pepsin-soluble collagen (PSC) and hydrolyzed collagen (HC) from mackerel scad skin. PSC was extracted using 0.5 M acetic acid containing 0.1% pepsin for 48 h at 4 °C. The obtained PSC was then hydrolyzed with collagenase type II (6250 U/g) to produce HC. The PSC yield obtained was 6.39 ± 0.97%, with a pH of 6.76 ± 0.18, while the HC yield was 96% from PSC. SDS-PAGE and Fourier Transform Infrared (FTIR) analysis showed the typical features of type I collagen. HC demonstrated high solubility (66.75–100%) throughout the entire pH range (1–10). The PSC and HC from mackerel scad skin showed antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH), with IC50 values of 148.55 ± 3.14 ppm and 34.966 ± 0.518 ppm, respectively. In the antiglycation test, PSC had an IC50 value of 239.29 ± 15.67 ppm, while HC had an IC50 of 68.43 ± 0.44 ppm. PSC also exhibited antityrosinase activity, with IC50 values of 234.66 ± 0.185 ppm (on the L-DOPA substrate), while HC had an IC50 value of 79.35 ± 0.5 ppm. Taken together, these results suggest that the skin of mackerel scad fish has potential antiaging properties and can be further developed for pharmaceutical and cosmetic purposes.
Collapse
Affiliation(s)
- Elisa Herawati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta 57126, Indonesia
- Correspondence: ; Tel.: +62-271669376
| | - Yochidamai Akhsanitaqwim
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| | - Pipin Agnesia
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| | - Shanti Listyawati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| | - Artini Pangastuti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| | - Adi Ratriyanto
- Department of Animal Science, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| |
Collapse
|
7
|
Evaluation of TILI-2 as an Anti-Tyrosinase, Anti-Oxidative Agent and Its Role in Preventing Melanogenesis Using a Proteomics Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103228. [PMID: 35630706 PMCID: PMC9147390 DOI: 10.3390/molecules27103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
There is a desire to develop new molecules that can combat hyperpigmentation. To this end, the N-terminal cysteine-containing heptapeptide TILI-2 has shown promising preliminary results. In this work, the mechanism by which it works was evaluated using a series of biochemical assays focusing on known biochemical pathways, followed by LC-MS/MS proteomics to discover pathways that have not been considered before. We demonstrate that TILI-2 is a competitive inhibitor of tyrosinase’s monophenolase activity and it could potentially scavenge ABTS and DPPH radicals. It has a very low cytotoxicity up to 1400 µM against human fibroblast NFDH cells and macrophage-like RAW 264.7 cells. Our proteomics study revealed that another putative mechanism by which TILI-2 may reduce melanin production involves the disruption of the TGF-β signaling pathway in mouse B16F1 cells. This result suggests that TILI-2 has potential scope to be used as a depigmenting agent.
Collapse
|
8
|
Marine and Agro-Industrial By-Products Valorization Intended for Topical Formulations in Wound Healing Applications. MATERIALS 2022; 15:ma15103507. [PMID: 35629534 PMCID: PMC9143632 DOI: 10.3390/ma15103507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
Over the past years, research attention has been focusing more on waste-derived, naturally derived, and renewable materials, in the view of a more sustainable economy. In this work, different topical formulations were obtained from the valorization of marine and agro-industrial by-products and the use of Carbopol 940 as gelling agent. In particular, the combination of extracts obtained from the marine snail, Rapanosa venosa, with Cladophora vagabunda and grape pomace extracts, was investigated for wound healing purposes. Rapana venosa has demonstrated wound healing properties and antioxidant activity. Similarly, grape pomace extracts have been shown to accelerate the healing process. However, their synergic use has not been explored yet. To this aim, four different formulations were produced. Three formulations differed for the presence of a different extract of Rapana venosa: marine collagen, marine gelatin, and collagen hydrolysate, while another formulation used mammalian gelatin as further control. Physico-chemical properties of the extracts as well as of the formulations were analyzed. Furthermore, thermal stability was evaluated by thermogravimetric analysis. Antioxidant capacity and biological behavior, in terms of cytocompatibility, wound healing, and antimicrobial potential, were assessed. The results highlighted for all the formulations (i) a good conservation and thermal stability in time, (ii) a neutralizing activity against free radicals, (iii) and high degree of cytocompatibility and tissue regeneration potential. In particular, collagen, gelatin, and collagen hydrolysate obtained from the Rapana venosa marine snail represent an important, valuable alternative to mammalian products.
Collapse
|
9
|
Song Y, Chen S, Li L, Zeng Y, Hu X. The Hypopigmentation Mechanism of Tyrosinase Inhibitory Peptides Derived from Food Proteins: An Overview. Molecules 2022; 27:molecules27092710. [PMID: 35566061 PMCID: PMC9103514 DOI: 10.3390/molecules27092710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Skin hyperpigmentation resulting from excessive tyrosinase expression has long been a problem for beauty lovers, which has not yet been completely solved. Although researchers are working on finding effective tyrosinase inhibitors, most of them are restricted, due to cell mutation and cytotoxicity. Therefore, functional foods are developing rapidly for their good biocompatibility. Food-derived peptides have been proven to display excellent anti-tyrosinase activity, and the mechanisms involved mainly include inhibition of oxidation, occupation of tyrosinase’s bioactive site and regulation of related gene expression. For anti-oxidation, peptides can interrupt the oxidative reactions catalyzed by tyrosinase or activate an enzyme system, including SOD, CAT, and GSH-Px to scavenge free radicals that stimulate tyrosinase. In addition, researchers predict that peptides probably occupy the site of the substrate by chelating with copper ions or combining with surrounding amino acid residues, ultimately inhibiting the catalytic activity of tyrosinase. More importantly, peptides reduce the tyrosinase expression content, primarily through the cAMP/PKA/CREB pathway, with PI3K/AKT/GSK3β, MEK/ERK/MITF and p38 MAPK/CREB/MITF as side pathways. The objective of this overview is to recap three main mechanisms for peptides to inhibit tyrosinase and the emerging bioinformatic technologies used in developing new inhibitors.
Collapse
Affiliation(s)
- Yuqiong Song
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China;
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.S.); (S.C.); (L.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence:
| |
Collapse
|
10
|
Tyrosinase Inhibitory and Antioxidant Activity of Enzymatic Protein Hydrolysate from Jellyfish ( Lobonema smithii). Foods 2022; 11:foods11040615. [PMID: 35206090 PMCID: PMC8871577 DOI: 10.3390/foods11040615] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
The optimization of antioxidant and anti-tyrosinase activity during jellyfish hydrolysate preparation was studied using a response surface methodology (RSM) with a face-centered composite design. The influence of the hydrolysis duration and the enzyme concentration on the IC50 of the DPPH and ABTS radical scavenging activity, ferric-reducing antioxidant power (FRAP), the degree of hydrolysis (DH), yield, and the IC50 value of tyrosinase inhibitory activity were determined. The optimum conditions for the production of jellyfish hydrolysate using alcalase (JFAH), flavourzyme (JFFH), or papain (JFPH) were achieved at hydrolysis times of 360, 345, or 360 min, respectively, and at an enzyme concentration of 5.0%. JFFH had the highest antioxidant and tyrosinase inhibitory activity. JFAH, JFFH, and JFPH concentrations of 2.5 mg/mL resulted in HaCaT cells (IC80) having a survival rate of 80%. The amino acid profile of JFFH contained about 43% hydrophobic and 57% hydrophilic amino acids, comprising Gly, Cys, Glx, Asx, which were dominant. The isolation of a peptide fraction from JFFH was carried out using ultrafiltration membranes (10, 3, and 1 kDa) and gel filtration chromatography. Fraction-III (1-3 kDa) showed the highest antioxidative and tyrosinase inhibitory activity.
Collapse
|
11
|
LIU C, HUANG J, HU Y, WU X. Functional properties, structural characteristics and biological activities of deer blood hydrolysates obtained by using different protease. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.84722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chang LIU
- Changchun University, People’s Republic of China
| | | | - Yanbo HU
- Changchun University, People’s Republic of China
| | - Xiuli WU
- Changchun University, People’s Republic of China
| |
Collapse
|
12
|
Mapoung S, Semmarath W, Arjsri P, Umsumarng S, Srisawad K, Thippraphan P, Yodkeeree S, Limtrakul (Dejkriengkraikul) P. Determination of Phenolic Content, Antioxidant Activity, and Tyrosinase Inhibitory Effects of Functional Cosmetic Creams Available on the Thailand Market. PLANTS (BASEL, SWITZERLAND) 2021; 10:1383. [PMID: 34371586 PMCID: PMC8309239 DOI: 10.3390/plants10071383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022]
Abstract
Recently, the global trend toward the use of natural extracts and antioxidant agents in the cosmetic cream industry to produce whitening effects has been increasing. This has also been a persistent trend in Thailand. In this study, samples of commercial cosmetic creams on the Thai market were assessed for a functional evaluation of their antioxidant activity, tyrosinase inhibitory effects, and phenolic contents. Samples were extracted using hot water and sonication extraction method to obtain the functional cream extracts. Total phenolic contents in all samples were within the range of 0.46-47.92 mg GAE/30 g cream. Antioxidant activities of the cream extracts were within the range of 3.61-43.98 mg Trolox equivalent/30 g cream, while tyrosinase inhibition activities were within the range of 2.58-97.94% of inhibition. With regard to the relationship between the total phenolic content and the antioxidant activity of the cosmetic creams, Pearson's correlation coefficient revealed a moderately positive relationship with an r value of 0.6108. Furthermore, the relationship between the antioxidant activity and the tyrosinase inhibitory activity of the cosmetic creams was highly positive with an r value of 0.7238. Overall, this study demonstrated that the total phenolic contents in the functional cosmetic creams could play a role in antioxidant activity and anti-tyrosinase activities. The findings indicate how the whitening and antioxidant effects of cosmetic creams could be maintained after the products have been formulated, as this concern can affect the consumer's decision when purchasing cosmetic products.
Collapse
Affiliation(s)
- Sariya Mapoung
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Warathit Semmarath
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Punnida Arjsri
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Sonthaya Umsumarng
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Veterinary Biosciences and Veterinary Public Health, Division of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Pilaiporn Thippraphan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pornngarm Limtrakul (Dejkriengkraikul)
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|