1
|
Thakur V, Baghmare P, Verma A, Verma JS, Geed SR. Recent progress in microbial biosurfactants production strategies: Applications, technological bottlenecks, and future outlook. BIORESOURCE TECHNOLOGY 2024; 408:131211. [PMID: 39102966 DOI: 10.1016/j.biortech.2024.131211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Biosurfactants are surface-active compounds produced by numerous microorganisms. They have gained significant attention due to their wide applications in food, pharmaceuticals, cosmetics, agriculture, and environmental remediation. The production efficiency and yield of microbial biosurfactants have improved significantly through the development and optimization of different process parameters. This review aims to provide an in-depth analysis of recent trends and developments in microbial biosurfactant production strategies, including submerged, solid-state, and co-culture fermentation. Additionally, review discusses biosurfactants' applications, challenges, and future perspectives. It highlights their advantages over chemical surfactants, emphasizing their biodegradability, low toxicity, and diverse chemical structures. However, the critical challenges in commercializing include high production costs and low yield. Strategies like genetic engineering, process optimization, and downstream processing, have been employed to address these challenges. The review provides insights into current commercial producers and highlights future perspectives such as novel bioprocesses, efficient microbial strains, and exploring their applications in emerging industries.
Collapse
Affiliation(s)
- Vishal Thakur
- School of Biotechnology, RGPV Bhopal, Madhya Pradesh, 462033, India; CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Pawan Baghmare
- School of Biotechnology, RGPV Bhopal, Madhya Pradesh, 462033, India; CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Ashish Verma
- Department of Bioengineering, Integral University, Lucknow 226026, India
| | - Jitendra Singh Verma
- CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
| | | |
Collapse
|
2
|
Castorina G, Cappa C, Negrini N, Criscuoli F, Casiraghi MC, Marti A, Rollini M, Consonni G, Erba D. Characterization and nutritional valorization of agricultural waste corncobs from Italian maize landraces through the growth of medicinal mushrooms. Sci Rep 2023; 13:21148. [PMID: 38036649 PMCID: PMC10689450 DOI: 10.1038/s41598-023-48252-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023] Open
Abstract
The research investigates the potential use of maize cobs (or corncobs) from five genotypes, including the B73 inbred line and four locally cultivated landraces from Northern Italy, as substrate for implementing Solid State fermentation processes with four Medicinal Mushrooms (MMs). The corncobs were characterized based on their proximate composition, lignin, phenolics content (both free and bound), and total antioxidant capacity. Among the MMs tested, Pleurotus ostreatus and Ganoderma annularis demonstrated the most robust performance. Their growth was parametrized using Image Analysis technique, and chemical composition of culture samples was characterized compared to that of corncobs alone. In all culture samples, the growth of MMs led to a significant reduction (averaging 40%) in the total phenolics contents compared to that measured in corncobs alone. However, the high content of free phenolics in the cobs negatively impacted the growth of P. ostreatus. The final MM-corncob matrix exhibited reduced levels of free sugars and starch (≤ 2.2% DW, as a sum) and increased levels of proteins (up to 5.9% DW) and soluble dietary fiber (up to 5.0% DW), with a notable trend toward higher levels of β-glucan compared to corncobs alone. This research paves the way for the use of this matrix as an active ingredient to enhance the nutritional value of food preparations.
Collapse
Affiliation(s)
- G Castorina
- DiSAA, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - C Cappa
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - N Negrini
- DiSAA, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - F Criscuoli
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - M C Casiraghi
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - A Marti
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - M Rollini
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy.
| | - G Consonni
- DiSAA, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy.
| | - D Erba
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| |
Collapse
|