1
|
Ginsburg-Moraff C, Grob J, Chin K, Eastman G, Wildhaber S, Bayliss M, Mues HM, Palmieri M, Poirier J, Reck M, Luneau A, Rodde S, Reilly J, Wagner T, Brocklehurst CE, Wyler R, Dunstan D, Marziale AN. Integrated and automated high-throughput purification of libraries on microscale. SLAS Technol 2022; 27:350-360. [PMID: 36028206 DOI: 10.1016/j.slast.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/04/2022] [Accepted: 08/21/2022] [Indexed: 12/14/2022]
Abstract
We herein report the development of an automation platform for rapid purification and quantification of chemical libraries including reformatting of chemical matter to 10 mM DMSO stock solutions. This fully integrated workflow features tailored conditions for preparative reversed-phase (RP) HPLC-MS on microscale based on analytical data, online fraction QC and CAD-based quantification as well as automated reformatting to enable rapid purification of chemical libraries. This automated workflow is entirely solution-based, eliminating the need to weigh or handle solids. This increases process efficiency and creates a link between high-throughput synthesis and profiling of novel chemical matter with respect to biological and physicochemical properties in relevant assays.
Collapse
Affiliation(s)
- Carol Ginsburg-Moraff
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Cambridge, MA 02139, USA.
| | - Jonathan Grob
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Cambridge, MA 02139, USA
| | - Karl Chin
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Cambridge, MA 02139, USA
| | - Grant Eastman
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Cambridge, MA 02139, USA
| | - Sandra Wildhaber
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | | | - Heinrich M Mues
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | - Marco Palmieri
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | - Jennifer Poirier
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Cambridge, MA 02139, USA
| | - Marcel Reck
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | - Alexandre Luneau
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | - Stephane Rodde
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | - John Reilly
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | - Trixie Wagner
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | - Cara E Brocklehurst
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | - René Wyler
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland
| | - David Dunstan
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Cambridge, MA 02139, USA.
| | - Alexander N Marziale
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Novartis Pharma AG., Fabrikstrasse 1, Basel 4056, Switzerland.
| |
Collapse
|
4
|
Fox CB, Sivananthan SJ, Mikasa TJ, Lin S, Parker SC. Charged aerosol detection to characterize components of dispersed-phase formulations. Adv Colloid Interface Sci 2013; 199-200:59-65. [PMID: 23855968 DOI: 10.1016/j.cis.2013.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 05/10/2013] [Accepted: 06/10/2013] [Indexed: 01/22/2023]
Abstract
Colloidal formulations based on biocompatible phospholipids, emulsifiers, and oils are employed in a wide range of applications including medicine, food, and cosmetics. However, characterization of these dispersed-phase components may be difficult to analyze by traditional HPLC with UV, visible, or fluorescence detection modalities due to lack of chromophores or fluorophores. Charged aerosol detection (CAD) is increasingly used for analysis of dispersed-phase components due to its broad applicability and high sensitivity for non-chromophore containing components found in many colloidal systems, such as lipid-based molecules. In this review, we summarize the recent applications of CAD reported in the literature as well as our own laboratory for the analysis of widely used components of dispersed-phase systems. In particular, we discuss the advantages and disadvantages of CAD compared to other HPLC detection methods, as well as the various sample preparation methods suitable for colloidal formulations prior to HPLC-CAD analysis.
Collapse
|
6
|
Edwards C, Lawton LA. Assessment of microcystin purity using charged aerosol detection. J Chromatogr A 2010; 1217:5233-8. [PMID: 20615509 DOI: 10.1016/j.chroma.2010.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/07/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
The increasing occurrence of toxic cyanobacterial blooms has led to a requirement for robust monitoring strategies and whilst several validated procedures have been developed these can be limited by the lack of high quality calibration standards. High quality standards must have confirmation of identity, purity and concentration by multiple methods. One aspect, purity, is rarely addressed but is essential. This is the first evaluation of the charged aerosol detector (CAD) to determine the benefits of incorporating a universal detector for more accurate purity determination of these peptides. Microcystins were detected at 5-10 ng on the column using the CAD, providing comparable quantification limits to those obtained using traditional UV detection. Purity determination of test compounds that had been partially purified, had showed that highest purity was at 238 nm>UV TIC>ESI TIC>CAD indicating that increased impurities could be detected using the CAD thus providing a more accurate indication of compound quality. Compounds purified by preparative HPLC were shown to have relative purities between 97% and 99%, however, when evaluated by CAD this dropped to 90-94% supporting the multi-detector strategy as essential for production of high quality compounds.
Collapse
Affiliation(s)
- Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, St. Andrew Street, Aberdeen, AB25 1HG, UK.
| | | |
Collapse
|