1
|
Xu Q, Teng H, Li X, Zhang Z, Han Y, Sun H. Natural Biomolecule Ovomucin-Chitosan Oligosaccharide Self-Assembly Nanogel for Lutein Application Enhancement: Characterization, Environmental Stability and Bioavailability. J Funct Biomater 2024; 15:111. [PMID: 38667568 PMCID: PMC11051026 DOI: 10.3390/jfb15040111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
As an essential nutrient, lutein (LUT) has the ability to aid in the prevention of eye diseases, cardiovascular diseases, and cancer. However, the application of LUT is largely restricted by its poor solubility and susceptibility to oxidative degradation. Thus, in this study, LUT-loaded nanogel (OVM-COS-LUT) was prepared by a self-assembly of ovomucin (OVM) and chitosan oligosaccharide (COS) to enhance the effective protection and bioavailability of LUT. The nanogel had excellent dispersion (PDI = 0.25) and an 89.96% LUT encapsulation rate. XRD crystal structure analysis confirmed that the encapsulated LUT maintained an amorphous morphology. In addition, the nanogel showed satisfactory stability with pH levels ranging from 2 to 9 and high ionic strengths (>100 mM). Even under long-term storage, the nanogel maintained an optimistic stabilization and protection capacity; its effective retention rates could reach 96.54%. In vitro, digestion simulation showed that the bioaccessibility and sustained release of OVM-COS-LUT nanogel was superior to that of free LUT. The nanogel provided significant antioxidant activity, and no significant harmful effects were detected in cytotoxicity analyses at higher concentrations. In summary, OVM-COS-LUT can be utilized as a potential safe oral and functional carrier for encapsulating LUT.
Collapse
Affiliation(s)
- Qi Xu
- College of Life Science, Qingdao University, Qingdao 266000, China;
- Institute of Advanced Cross-Field Science, Qingdao University, Qingdao 266000, China; (X.L.); (Z.Z.); (Y.H.)
| | - Haoye Teng
- College of Life Science, Qingdao University, Qingdao 266000, China;
- Institute of Advanced Cross-Field Science, Qingdao University, Qingdao 266000, China; (X.L.); (Z.Z.); (Y.H.)
| | - Xuanchen Li
- Institute of Advanced Cross-Field Science, Qingdao University, Qingdao 266000, China; (X.L.); (Z.Z.); (Y.H.)
| | - Zhenqing Zhang
- Institute of Advanced Cross-Field Science, Qingdao University, Qingdao 266000, China; (X.L.); (Z.Z.); (Y.H.)
| | - Yumeng Han
- Institute of Advanced Cross-Field Science, Qingdao University, Qingdao 266000, China; (X.L.); (Z.Z.); (Y.H.)
| | - Haixin Sun
- College of Life Science, Qingdao University, Qingdao 266000, China;
| |
Collapse
|
2
|
Zhu Y, Peng Y, Wen J, Quek SY. A Comparison of Microfluidic-Jet Spray Drying, Two-Fluid Nozzle Spray Drying, and Freeze-Drying for Co-Encapsulating β-Carotene, Lutein, Zeaxanthin, and Fish Oil. Foods 2021; 10:foods10071522. [PMID: 34359390 PMCID: PMC8303781 DOI: 10.3390/foods10071522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Various microencapsulation techniques can result in significant differences in the properties of dried microcapsules. Microencapsulation is an effective approach to improve fish oil properties, including oxidisability and unpleasant flavour. In this study, β-carotene, lutein, zeaxanthin, and fish oil were co-encapsulated by microfluidic-jet spray drying (MFJSD), two-fluid nozzle spray drying (SD), and freeze-drying (FD), respectively. The aim of the current study is to understand the effect of different drying techniques on microcapsule properties. Whey protein isolate (WPI) and octenylsuccinic anhydride (OSA) modified starch were used as wall matrices in this study for encapsulating carotenoids and fish oil due to their strong emulsifying properties. Results showed the MFJSD microcapsules presented uniform particle size and regular morphological characteristics, while the SD and FD microcapsules presented a large distribution of particle size and irregular morphological characteristics. Compared to the SD and FD microcapsules, the MFJSD microcapsules possessed higher microencapsulation efficiency (94.0–95.1%), higher tapped density (0.373–0.652 g/cm3), and higher flowability (the Carr index of 16.0–30.0%). After a 4-week storage, the SD microcapsules showed the lower retention of carotenoids, as well as ω-3 LC-PUFAs than the FD and MFJSD microcapsules. After in vitro digestion trial, the differences in the digestion behaviours of the microcapsules mainly resulted from the different wall materials, but independent of drying methods. This study has provided an alternative way of delivering visual-beneficial compounds via a novel drying method, which is fundamentally essential in both areas of microencapsulation application and functional food development.
Collapse
Affiliation(s)
- Yongchao Zhu
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (Y.Z.); (Y.P.)
| | - Yaoyao Peng
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (Y.Z.); (Y.P.)
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (Y.Z.); (Y.P.)
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
- Correspondence:
| |
Collapse
|
3
|
Chen H, Wang J, Liu X, Zhou A, Xiao J, Huang K, Chen H, Cao Y. Optimization in continuous phase-transition extraction of crude flavonoids from finger citron fruit and evaluation on their antiaging activities. Food Sci Nutr 2020; 8:1636-1648. [PMID: 32180971 PMCID: PMC7063346 DOI: 10.1002/fsn3.1450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
The development of antiaging functional products is a hot topic in the field of functional foods. However, the efficient extraction of functional ingredients is the limiting step for the functional food industry. Continuous phase-transition extraction (CPE) is a new extraction technique that combines the advantages of Soxhlet extraction and supercritical extraction, which may have a distinct advantage over traditional methods in the extraction of flavonoids. In our study, the Box-Behnken design combined with response surface methodology was used to optimize CPE of crude flavonoids from finger citron fruit. The antiaging activities of finger citron crude flavonoids (FCCF) were evaluated by Caenorhabditis elegans (C. elegans) model. The optimal extraction conditions for CPE were as follows: ethanol concentration 85%, temperature 90°C, time 120 min, and pressure 0.2 MPa. Compared with the heat reflux extraction, the extraction rate and content of FCCF extracted by CPE increased by 24.28% and 33.22% (p < .05), respectively. FCCF extended the lifespan of C. elegans by 14.94% without causing adverse effects on their reproduction and locomotion ability. A further analysis suggested that FCCF prolonged the lifespan of nematodes under normal and oxidative stress by increasing the activity of major enzymes in endogenous antioxidant defense system and reducing the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA). The results confirmed the effectiveness of CPE in extracting crude flavonoids from finger citron fruit, and the extracted FCCF exhibited strong antiaging activities.
Collapse
Affiliation(s)
- Haiqiang Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Science South China Agricultural University Guangzhou China.,Guangdong Zhancui Food co., Ltd. Chaozhou China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Science South China Agricultural University Guangzhou China.,Guangdong Zhancui Food co., Ltd. Chaozhou China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Science South China Agricultural University Guangzhou China.,Guangdong Zhancui Food co., Ltd. Chaozhou China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Science South China Agricultural University Guangzhou China.,Guangdong Zhancui Food co., Ltd. Chaozhou China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Science South China Agricultural University Guangzhou China.,Guangdong Zhancui Food co., Ltd. Chaozhou China
| | | | - Hanmin Chen
- Guangdong Zhancui Food co., Ltd. Chaozhou China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods College of Food Science South China Agricultural University Guangzhou China.,Guangdong Zhancui Food co., Ltd. Chaozhou China
| |
Collapse
|
4
|
Faustino MV, Faustino MAF, Silva H, Cunha Â, Silva AMS, Pinto DCGA. Puccinellia maritima, Spartina maritime, and Spartina patens Halophytic Grasses: Characterization of Polyphenolic and Chlorophyll Profiles and Evaluation of Their Biological Activities. Molecules 2019; 24:E3796. [PMID: 31652513 PMCID: PMC6832526 DOI: 10.3390/molecules24203796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 11/30/2022] Open
Abstract
Halophytic grasses have been recently targeted as possible sources of nutraceutical and medicinal compounds. Nonetheless, few studies have been conducted on the phytochemistry and biological activities of metabolites produced by these plants. Among these, Spartina maritima (Curtis) Fernald, Spartina patens (Aiton.) Muhl., and Puccinellia maritima (Hudson) Parl. are three halophytic grasses whose chemical composition and bioactivities are unknown. The present work broadens the knowledge on the polyphenolic and chlorophyll composition of these species identifying for the first time hydroxycinnamic acids and their derivatives, flavones, flavonols, lignans, as well as chlorophylls and xantophylls. The extracts were particularly rich in caffeic and ferulic acids as well as in trihydroxymethoxyflavone, apigenin and tricin derivatives. Interestingly, several of the identified compounds are relevant from a medicinal and nutraceutical point of view putting in evidence the potential of these species. Thus, the antioxidant, anti-acetylcholinesterase, antibacterial, and antifungal activities of the polyphenolic extracts were assessed as well as the photophysical properties of the chlorophyll-rich extracts. The results, herein presented for the first time, reinforce the nutritional and the medicinal potential of these halophytic grasses.
Collapse
Affiliation(s)
- Maria V Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Maria A F Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Helena Silva
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Ângela Cunha
- Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Artur M S Silva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Diana C G A Pinto
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Kim JS, Park JT, Ahn J, Ha TY, Kim S. Optimization of Accelerated Solvent Extraction of Capsanthin from Red Paprika ( Capsicum annuum L.) Using Response Surface Methodology. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ji-Sun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
- Research group of Natural Materials and Metabolism, Korea Food Research Institute
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University
| | - Jiyun Ahn
- Research group of Natural Materials and Metabolism, Korea Food Research Institute
| | - Tae-Youl Ha
- Research group of Natural Materials and Metabolism, Korea Food Research Institute
| | - Suna Kim
- Department of Food and Nutrition in Human Ecology, College of Natural Science, Korea National Open University
| |
Collapse
|
6
|
Kang JH, Kim S, Moon B. Optimization by response surface methodology of lutein recovery from paprika leaves using accelerated solvent extraction. Food Chem 2016; 205:140-5. [DOI: 10.1016/j.foodchem.2016.03.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 11/16/2022]
|
7
|
Carotenoid profiling from 27 types of paprika (Capsicum annuum L.) with different colors, shapes, and cultivation methods. Food Chem 2016; 201:64-71. [DOI: 10.1016/j.foodchem.2016.01.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/04/2016] [Accepted: 01/10/2016] [Indexed: 11/18/2022]
|
8
|
Heo JY, Kim S, Kang JH, Moon B. Determination of Lutein from Green Tea and Green Tea By-Products Using Accelerated Solvent Extraction and UPLC. J Food Sci 2014; 79:C816-21. [DOI: 10.1111/1750-3841.12438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/26/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Ji-Young Heo
- Dept. of Food and Nutrition; Chung-Ang Univ; Anseoung-si Gyeonggi-do; 456-756 Korea
| | - Suna Kim
- Food and Nutrition in Home Economics; Korea National Open Univ; 169 Dongsung-Dong Jongno-Gu Seoul 110-791 Korea
| | - Jae-Hyun Kang
- Dept. of Food and Nutrition; Chung-Ang Univ; Anseoung-si Gyeonggi-do; 456-756 Korea
| | - BoKyung Moon
- Dept. of Food and Nutrition; Chung-Ang Univ; Anseoung-si Gyeonggi-do; 456-756 Korea
| |
Collapse
|
9
|
Lapshova MS, Deineka VI, Deineka LA, Blinova IP, Tret’yakov MY. Identification of xanthophylls in a marigold petal extract. JOURNAL OF ANALYTICAL CHEMISTRY 2013. [DOI: 10.1134/s1061934813110075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|