1
|
Ansari MD, Shafi S, Pandit J, Waheed A, Jahan RN, Khan I, Vohora D, Jain S, Aqil M, Sultana Y. Raloxifene encapsulated spanlastic nanogel for the prevention of bone fracture risk via transdermal administration: Pharmacokinetic and efficacy study in animal model. Drug Deliv Transl Res 2024; 14:1635-1647. [PMID: 37996726 DOI: 10.1007/s13346-023-01480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 11/25/2023]
Abstract
This research work is to evaluate spanlastic-loaded raloxifene (RLX) nanogel administration via the transdermal route to avoid its hepatic metabolism and to enhance the bioavailability for better management of osteoporosis. RLX-loaded spanlastic nanogel was prepared and characterized for its viscosity, pH, spreadability, and texture profile. The formulation was applied on the skin surface of the animal for pharmacokinetic evaluation, and later, the efficacy of the formulation was assessed in ovariectomized female Wistar rats. The nanogel was obtained with a viscosity (2552.66 ± 30.61 cP), pH (7.1 ± 0.1), and spreadability (7.1 ± 0.2 cm). The texture properties, cohesiveness, and adhesiveness of the nanogel showed its suitability for transdermal application. Nanogel showed no sign of edema and erythema in the skin irritation test which revealed its safety for transdermal application. The t1/2 obtained for RLX-spanlastic nanogel (37.02 ± 0.59 h) was much higher than that obtained for RLX-oral suspension (14.43 h). The relative bioavailability was found to be 215.96% for RLX-spanlastic nanogel, and the drug and formulation did not show any toxicity in any of the vital organs, as well as no hematological changes occurring in blood samples. In microarchitectural measurement, RLX-spanlastic nanogel exhibited no unambiguous deviations along with improved bone mineral density compared to the RLX suspension treated group. Transdermal administration of RLX-spanlastic nanogel showed significant improvement of drug bioavailability (approx. twice to oral administration) without any toxic effect in the treated rats. Hence, spanlastic nanogel could be a better approach to deliver RLX via transdermal route for the management of osteoporosis.
Collapse
Affiliation(s)
- Mohd Danish Ansari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India
| | - Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Jayamanti Pandit
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India
| | - Ayesha Waheed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India
| | - Rao Nargis Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India
| | - Iram Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shreshta Jain
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), M. B. Road, 110062, New Delhi, India.
| |
Collapse
|
2
|
Ansari MD, khan I, Solanki P, Pandit J, Jahan RN, Aqil M, Sultana Y. Fabrication and optimization of raloxifene loaded spanlastics vesicle for transdermal delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
Jakhar V, Sharma DK. A sustainable approach for graphene-oxide surface decoration using Oxalis corniculata leaf extract-derived silver nanoparticles: their antibacterial activities and electrochemical sensing. Dalton Trans 2020; 49:8625-8635. [PMID: 32543612 DOI: 10.1039/d0dt01747g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, a facile green synthesis using Oxalis corniculata leaf extract (OCLE) as a biodegradable reducing and capping/stabilizing agent was carried out for the construction of Oxalis corniculata leaf extract-derived silver nanoparticles (OCLE-AgNPs). Moreover, OCLE-AgNPΔGO nanocomposites were fashioned simply by mixing a GO suspension and supernatant OCLE-AgNPs via a one-pot environmentally benign method. The AgNPΔGO nanocomposites are biocompatible materials for potential applications such as antibacterial activities against two different types of bacterial cells, namely Gram-positive Bacillus subtilis and Gram-negative Escherichia coli and selective electrochemical sensing to itraconazole (ITRA) at the fabricated GCE (AgNPΔGO@GCE). AgNPΔGO@GCE sensors gave excellent outcomes for ITRA as higher current response over the bare GCE. Under optimized conditions, the oxidation peak current of ITRA varied linearly with a wide range of the concentration between 26.7 μM and 103.8 μM with a correlation coefficient of 0.997 and a detection limit of 0.1276 μM, for differential pulse anodic stripping voltammetric (DP-ASV) technique. In addition, the possible mechanism for the ITRA oxidation was further verified and explained by single-electron transfer (SET) and proton removal mechanism steps. The developed sensor exhibited good repeatability, reproducibility, and stability. The use of environmentally benign and renewable plant material offers enormous benefits of eco-friendliness applicability.
Collapse
Affiliation(s)
- Varsha Jakhar
- Electrochemical Sensor Research Laboratory, Department of Chemistry, University of Rajasthan, Jaipur-302004, India.
| | | |
Collapse
|
4
|
Imran M, Iqubal MK, Ahmad S, Ali J, Baboota S. Stability-Indicating High-Performance Thin-Layer Chromatographic Method for the Simultaneous Determination of Quercetin and Resveratrol in the Lipid-Based Nanoformulation. JPC-J PLANAR CHROMAT 2019. [DOI: 10.1556/1006.2019.32.5.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Mohammad Imran
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
5
|
Nemutlu E, Eroğlu İ, Eroğlu H, Kır S. In Vitro Release Test of Nano-drug Delivery Systems Based on Analytical and Technological Perspectives. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180912125931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background:Nanotech products are gaining more attention depending on their advantages for improving drug solubility, maintenance of drug targeting, and attenuation of drug toxicity. In vitro release test is the critical physical parameter to determine the pharmaceutical quality of the product, to monitor formulation design and batch-to-batch variation.Methods:Spectrophotometric and chromatographic methods are mostly used in quantification studies from in vitro release test of nano-drug delivery systems. These techniques have advantages and disadvantages with respect to each other considering dynamic range, selectivity, automation, compatibility with in vitro release media and cost per sample.Results:It is very important to determine the correct kinetic profile of active pharmaceutical substances. At this point, the analytical method used for in vitro release tests has become a very critical parameter to correctly assess the profiles. In this review, we provided an overview of analytical methods applied to the in vitro release assay of various nanopharmaceuticals.Conclusion:This review presents practical direction on analytical method selection for in vitro release test on nanopharmaceuticals. Moreover, precautions on analytical method selection, optimization and validation were discussed.
Collapse
Affiliation(s)
- Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| | - İpek Eroğlu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| | - Hakan Eroğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| | - Sedef Kır
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| |
Collapse
|
6
|
Zhu R, Li MD, Du L, Phillips DL. Singlet versus Triplet Excited State Mediated Photoinduced Dehalogenation Reactions of Itraconazole in Acetonitrile and Aqueous Solutions. J Phys Chem B 2017; 121:2712-2720. [PMID: 28281345 DOI: 10.1021/acs.jpcb.6b11934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photoinduced dehalogenation of the antifungal drug itraconazole (ITR) in acetonitrile (ACN) and ACN/water mixed solutions was investigated using femtosecond and nanosecond time-resolved transient absorption (fs-TA and ns-TA, respectively) and nanosecond time-resolved resonance Raman spectroscopy (ns-TR3) experiments. An excited resonance energy transfer is found to take place from the 4-phenyl-4,5-dihydro-3H-1,2,4-triazol-3-one part of the molecule to the 1,3-dichlorobenzene part of the molecule when ITR is excited by ultraviolet light. This photoexcitation is followed by a fast carbon-halogen bond cleavage that leads to the generation of radical intermediates via either triplet and/or singlet excited states. It is found that the singlet excited state-mediated carbon-halogen cleavage is the predominant dehalogenation process in ACN solvent, whereas a triplet state-mediated carbon-halogen cleavage prefers to occur in the ACN/water mixed solutions. The singlet-to-triplet energy gap is decreased in the ACN/water mixed solvents and this helps facilitate an intersystem crossing process, and thus, the carbon-halogen bond cleavage happens mostly through an excited triplet state in the aqueous solutions examined. The ns-TA and ns-TR3 results also provide some evidence that radical intermediates are generated through a homolytic carbon-halogen bond cleavage via predominantly the singlet excited state pathway in ACN but via mainly the triplet state pathway in the aqueous solutions. In strong acidic solutions, protonation at the oxygen and/or nitrogen atoms of the 1,2,4-triazole-3-one group appears to hinder the dehalogenation reactions. This may offer the possibility that the phototoxicity of ITR due to the generation of aryl or halogen radicals can be reduced by protonation of certain moieties in suitably designed ITR halogen-containing derivatives.
Collapse
Affiliation(s)
- Ruixue Zhu
- Department of Chemistry, The University of Hong Kong , Pokfulam Road, Pokfulam, Hong Kong S.A.R., P. R. China
| | - Ming-de Li
- Department of Chemistry, The University of Hong Kong , Pokfulam Road, Pokfulam, Hong Kong S.A.R., P. R. China.,Department of Chemistry, Shantou University , Shantou 515063, China
| | - Lili Du
- Department of Chemistry, The University of Hong Kong , Pokfulam Road, Pokfulam, Hong Kong S.A.R., P. R. China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong , Pokfulam Road, Pokfulam, Hong Kong S.A.R., P. R. China
| |
Collapse
|
7
|
Shalaby A, Hassan WS, Hendawy HA, Ibrahim A. Electrochemical oxidation behavior of itraconazole at different electrodes and its anodic stripping determination in pharmaceuticals and biological fluids. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2015.12.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Tariq M, Iqbal Z, Ali J, Baboota S, Parveen R, Mirza M, Ahmad S, Sahni J. Development and Validation of a Stability-Indicating High-Performance Thin-Layer Chromatographic Method for the Simultaneous Quantification of Sparfloxacin and Flurbiprofen in Nanoparticulate Formulation. JPC-J PLANAR CHROMAT 2014. [DOI: 10.1556/jpc.27.2014.2.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Mirza MA, Ahmad S, Mallick MN, Manzoor N, Talegaonkar S, Iqbal Z. Development of a novel synergistic thermosensitive gel for vaginal candidiasis: An in vitro, in vivo evaluation. Colloids Surf B Biointerfaces 2013. [DOI: 10.1016/j.colsurfb.2012.10.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|