1
|
DOPE/CHEMS-Based EGFR-Targeted Immunoliposomes for Docetaxel Delivery: Formulation Development, Physicochemical Characterization and Biological Evaluation on Prostate Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15030915. [PMID: 36986777 PMCID: PMC10052572 DOI: 10.3390/pharmaceutics15030915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Docetaxel (DTX) is a non-selective antineoplastic agent with low solubility and a series of side effects. The technology of pH-sensitive and anti-epidermal growth factor receptor (anti-EGFR) immunoliposomes aims to increase the selective delivery of the drug in the acidic tumor environment to cells with EFGR overexpression. Thus, the study aimed to develop pH-sensitive liposomes based on DOPE (dioleoylphosphatidylethanolamine) and CHEMS (cholesteryl hemisuccinate), using a Box–Behnken factorial design. Furthermore, we aimed to conjugate the monoclonal antibody cetuximab onto liposomal surface, as well as to thoroughly characterize the nanosystems and evaluate them on prostate cancer cells. The liposomes prepared by hydration of the lipid film and optimized by the Box–Behnken factorial design showed a particle size of 107.2 ± 2.9 nm, a PDI of 0.213 ± 0.005, zeta potential of −21.9 ± 1.8 mV and an encapsulation efficiency of 88.65 ± 20.3%. Together, FTIR, DSC and DRX characterization demonstrated that the drug was properly encapsulated, with reduced drug crystallinity. Drug release was higher in acidic pH. The liposome conjugation with the anti-EGFR antibody cetuximab preserved the physicochemical characteristics and was successful. The liposome containing DTX reached an IC50 at a concentration of 65.74 nM in the PC3 cell line and 28.28 nM in the DU145 cell line. Immunoliposome, in turn, for PC3 cells reached an IC50 of 152.1 nM, and for the DU145 cell line, 12.60 nM, a considerable enhancement of cytotoxicity for the EGFR-positive cell line. Finally, the immunoliposome internalization was faster and greater than that of liposome in the DU145 cell line, with a higher EGFR overexpression. Thus, based on these results, it was possible to obtain a formulation with adequate characteristics of nanometric size, a high encapsulation of DTX and liposomes and particularly immunoliposomes containing DTX, which caused, as expected, a reduction in the viability of prostate cells, with high cellular internalization in EGFR overexpressing cells.
Collapse
|
2
|
Öztürk-Atar K, Kaplan M, Çalış S. Development and evaluation of polymeric micelle containing tablet formulation for poorly water-soluble drug: tamoxifen citrate. Drug Dev Ind Pharm 2020; 46:1695-1704. [PMID: 32893676 DOI: 10.1080/03639045.2020.1820037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Poor aqueous solubility is one of the key reasons for slow dissolution rate and poor intestinal absorption and finally that causes low therapeutic efficacy of many existing drugs. Tamoxifen citrate (TMX) (BCS Class II drug) with low water solubility has poor oral bioavailability in the range of 20%-30%, therefore, high doses are required for treatment with TMX. Self-assemblage of amphiphilic polymers leads to the formation of polymeric micelles which makes them unique nano-carriers with excellent biocompatibility, low toxicity, enhanced blood circulation time, and solubilization of poorly water-soluble drugs. In this study poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) triblock copolymer, which has been approved by FDA for oral application was used to benefit its micellar solubilization effect. Self-assembled micelles were prepared for the delivery of TMX and this way TMX solubility was increased approximately 60 times. TMX-treated cells showed 38.06 ± 1.5% viability at 50 µM concentration for 24 h; 66.71 ± 11.6% viability at 25 µM concentration for 48 h, at the same conditions TMX-loaded micelles exhibited 24.994 ± 0.25% and 43.36 ± 4.37% cell viability, respectively (p < 0.05). These results showed that the encapsulation of TMX into PEG-PPG-PEG micelles facilitated the cellular uptake, which led to an increased cytotoxicity in MCF-7 cancer cells. Tablet formulation containing lyophilized TMX-loaded micelles was showed an improved dissolution than commercial TMX tablet (Tamoxifen® TEVA). It can be reasonably expected that the obtained drug dissolution rate and increased cytotoxicity to tumor cells will result in an increase of TMX bioavailability and tolerability associated with an important dose reduction and decreased side effects.
Collapse
Affiliation(s)
- Kıvılcım Öztürk-Atar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Meryem Kaplan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sema Çalış
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Nemutlu E, Eroğlu İ, Eroğlu H, Kır S. In Vitro Release Test of Nano-drug Delivery Systems Based on Analytical and Technological Perspectives. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180912125931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background:Nanotech products are gaining more attention depending on their advantages for improving drug solubility, maintenance of drug targeting, and attenuation of drug toxicity. In vitro release test is the critical physical parameter to determine the pharmaceutical quality of the product, to monitor formulation design and batch-to-batch variation.Methods:Spectrophotometric and chromatographic methods are mostly used in quantification studies from in vitro release test of nano-drug delivery systems. These techniques have advantages and disadvantages with respect to each other considering dynamic range, selectivity, automation, compatibility with in vitro release media and cost per sample.Results:It is very important to determine the correct kinetic profile of active pharmaceutical substances. At this point, the analytical method used for in vitro release tests has become a very critical parameter to correctly assess the profiles. In this review, we provided an overview of analytical methods applied to the in vitro release assay of various nanopharmaceuticals.Conclusion:This review presents practical direction on analytical method selection for in vitro release test on nanopharmaceuticals. Moreover, precautions on analytical method selection, optimization and validation were discussed.
Collapse
Affiliation(s)
- Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| | - İpek Eroğlu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| | - Hakan Eroğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| | - Sedef Kır
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| |
Collapse
|
5
|
Dehghani F, Farhadian N, Golmohammadzadeh S, Biriaee A, Ebrahimi M, Karimi M. Preparation, characterization and in-vivo evaluation of microemulsions containing tamoxifen citrate anti-cancer drug. Eur J Pharm Sci 2016; 96:479-489. [PMID: 27693298 DOI: 10.1016/j.ejps.2016.09.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/24/2016] [Accepted: 09/24/2016] [Indexed: 12/18/2022]
Abstract
The aim of this study was to prepare and characterize a new nanocarrier for oral delivery of tamoxifen citrate (TMC) as a lipophilic oral administrated drug. This drug has low oral bioavailability due to its low aqueous solubility. To enhance the solubility of this drug, the microemulsion system was applied in form of oil-in-water. Sesame oil and Tween 80 were used as drug solvent oil and surfactant, respectively. Two different formulations were prepared for this purpose. The first formulation contained edible glycerin as co-surfactant and the second formulation contained Span 80 as a mixed surfactant. The results of characterization showed that the mean droplet size of drug-free samples was in the range of 16.64-64.62nm with a PDI value of <0.5. In a period of 6months after the preparation of samples, no phase sedimentation was observed, which confirmed the high stability of samples. TMC with a mass ratio of 1% was loaded in the selected samples. No significant size enlargement and drug precipitation were observed 6months after drug loading. In addition, the drug release profile at experimental environments in buffers with pH=7.4 and 5.5 showed that in the first 24h, 85.79 and 100% of the drug were released through the first formulation and 76.63 and 66.42% through the second formulation, respectively. The in-vivo results in BALB/c female mice showed that taking microemulsion form of drug caused a significant reduction in the growth rate of cancerous tumor and weight loss of the mice compared to the consumption of commercial drug tablets. The results confirmed that the new formulation of TMC could be useful for breast cancer treatment.
Collapse
Affiliation(s)
- Faranak Dehghani
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, P. O. Box 91779-48974, Islamic Republic of Iran
| | - Nafiseh Farhadian
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, P. O. Box 91779-48974, Islamic Republic of Iran.
| | - Shiva Golmohammadzadeh
- Pharmacy Department, Mashhad University of Medical Sciences, Mashhad, P.O. Box: 91388-13944, Islamic Republic of Iran
| | - Amir Biriaee
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, P. O. Box 91779-48974, Islamic Republic of Iran
| | - Mahmoud Ebrahimi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, P.O. Box: 91388-13944, Islamic Republic of Iran
| | - Mohammad Karimi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, P.O. Box: 91388-13944, Islamic Republic of Iran
| |
Collapse
|
6
|
Eloy JO, Petrilli R, Topan JF, Antonio HMR, Barcellos JPA, Chesca DL, Serafini LN, Tiezzi DG, Lee RJ, Marchetti JM. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy. Colloids Surf B Biointerfaces 2016; 141:74-82. [PMID: 26836480 DOI: 10.1016/j.colsurfb.2016.01.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 12/27/2022]
Abstract
Paclitaxel and rapamycin have been reported to act synergistically to treat breast cancer. Albeit paclitaxel is available for breast cancer treatment, the most commonly used formulation in the clinic presents side effects, limiting its use. Furthermore, both drugs present pharmacokinetics drawbacks limiting their in vivo efficacy and clinic combination. As an alternative, drug delivery systems, particularly liposomes, emerge as an option for drug combination, able to simultaneously deliver co-loaded drugs with improved therapeutic index. Therefore, the purpose of this study is to develop and characterize a co-loaded paclitaxel and rapamycin liposome and evaluate it for breast cancer efficacy both in vitro and in vivo. Results showed that a SPC/Chol/DSPE-PEG (2000) liposome was able to co-encapsulate paclitaxel and rapamycin with suitable encapsulation efficiency values, nanometric particle size, low polydispersity and neutral zeta potential. Taken together, FTIR and thermal analysis evidenced drug conversion to the more bioavailable molecular and amorphous forms, respectively, for paclitaxel and rapamycin. The pegylated liposome exhibited excellent colloidal stability and was able to retain drugs encapsulated, which were released in a slow and sustained fashion. Liposomes were more cytotoxic to 4T1 breast cancer cell line than the free drugs and drugs acted synergistically, particularly when co-loaded. Finally, in vivo therapeutic evaluation carried out in 4T1-tumor-bearing mice confirmed the in vitro results. The co-loaded paclitaxel/rapamycin pegylated liposome better controlled tumor growth compared to the solution. Therefore, we expect that the formulation developed herein might be a contribution for future studies focusing on the clinical combination of paclitaxel and rapamycin.
Collapse
Affiliation(s)
- Josimar O Eloy
- College of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida do Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil; College of Pharmacy, The Ohio State University, Columbus, 500W 12th Ave, Columbus, OH 43210, United States
| | - Raquel Petrilli
- College of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida do Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil; College of Pharmacy, The Ohio State University, Columbus, 500W 12th Ave, Columbus, OH 43210, United States
| | - José Fernando Topan
- College of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida do Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil
| | - Heriton Marcelo Ribeiro Antonio
- School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida Bandeirantes s/n, 14040-040 Ribeirao Preto, SP, Brazil
| | - Juliana Palma Abriata Barcellos
- College of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida do Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil
| | - Deise L Chesca
- School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida Bandeirantes s/n, 14040-040 Ribeirao Preto, SP, Brazil
| | - Luciano Neder Serafini
- School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida Bandeirantes s/n, 14040-040 Ribeirao Preto, SP, Brazil
| | - Daniel G Tiezzi
- School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida Bandeirantes s/n, 14040-040 Ribeirao Preto, SP, Brazil
| | - Robert J Lee
- College of Pharmacy, The Ohio State University, Columbus, 500W 12th Ave, Columbus, OH 43210, United States
| | - Juliana Maldonado Marchetti
- College of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida do Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| |
Collapse
|