1
|
Steimel KG, Hwang R, Dinh D, Donnell MT, More S, Fung E. Evaluation of chemicals leached from PET and recycled PET containers into beverages. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:251-260. [PMID: 36521108 DOI: 10.1515/reveh-2022-0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The use of recycled polyethylene terephthalate (rPET) containers, a recent shift in the beverage industry, poses new potential human health concerns including contamination from the original container; use of additives, detergents, and catalysts during recycling; and improper recycling practices. The purpose of this analysis was to evaluate available data regarding: (1) chemicals leached from PET and rPET in bottle form; (2) concentration of these chemicals; and (3) trends between rPET percent and concentration of chemicals leached. This analysis identified 211 scientific articles related to recycled plastic and leachables. Three articles met the inclusion criteria: (1) plastic was in bottle form; (2) plastic was made of PET or rPET; and (3) the study analyzed both PET and rPET using the same methods. This evaluation demonstrated that only nine compounds - benzene, styrene, acetaldehyde, 2-methyl-1,3-dioxolane, furan, bisphenol A (BPA), 2-buta-none, acetone, and limonene - have been studied. Notably, the leachable concentration of benzene, styrene, and BPA increased as the percent of recycled content increased from 0 to 100%. However, 2-methyl-1,3-dioxolane and furan implied a reverse trend, where the leachable concentration decreased as the percent of recycled content increased from 0 to 100%. The concentrations of 2-butanone, acetone, and limonene did not follow any suggested trend. Evidently, recycling PET can lead to changes in the leachables profile. This analysis further identified key areas of research, including testing a variety of liquid types, that need to be addressed to adequately conduct a human health risk assessment.
Collapse
Affiliation(s)
| | - Ruth Hwang
- Stantec (ChemRisk), San Francisco, CA, USA
| | - Dan Dinh
- Stantec (ChemRisk), Brooklyn, NY, USA
| | | | | | | |
Collapse
|
2
|
Núñez SS, Ortuño N, Fernández-Durán S, Moltó J, Conesa JA. Analysis and removal of bisphenols in recycled plastics using polyethylene glycol. Sci Rep 2024; 14:12824. [PMID: 38834728 DOI: 10.1038/s41598-024-63800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024] Open
Abstract
This study examines the presence of bisphenol A (BPA), S (BPS), F (BPF), and M (BPM) in various recycled plastics readily available on the market (LDPE, HDPE, PET, and PP), in light of European Food Safety Authority (EFSA) limits. Twenty samples of different origin are analyzed, cleaning treatments are applied, and the migration potential of these bisphenols into food is studied. BPM is absent in all samples, but a post-consumer recycled LDPE sample reveals high bisphenol concentrations, raising concerns, reaching 8540 ng/g, 370 ng/g, and 29 ng/g of BPA, BPS, and BPF, respectively. Migration tests show substantial migration of these contaminants into food simulants. Using a cleaning treatment with polyethylene glycol (PEG 400) reduces BPA in LDPE, HDPE, PP, and PET samples by 95%, 99%, 97% and 28%, respectively, highlighting the importance of cleaning treatments across various polymers in plastic recycling. These findings not only protect food safety but addressing environmental challenges associated with plastic recycling.
Collapse
Affiliation(s)
- Samuel S Núñez
- Department of Chemical Engineering, University of Alicante, P.O. Box 99, 03080, Alicante, Spain
- Institute of Chemical Process Engineering, University of Alicante, P.O. Box 99, 03080, Alicante, Spain
| | - Núria Ortuño
- Department of Chemical Engineering, University of Alicante, P.O. Box 99, 03080, Alicante, Spain
- Institute of Chemical Process Engineering, University of Alicante, P.O. Box 99, 03080, Alicante, Spain
| | - Sabrina Fernández-Durán
- Department of Chemical Engineering, University of Alicante, P.O. Box 99, 03080, Alicante, Spain
| | - Julia Moltó
- Department of Chemical Engineering, University of Alicante, P.O. Box 99, 03080, Alicante, Spain
- Institute of Chemical Process Engineering, University of Alicante, P.O. Box 99, 03080, Alicante, Spain
| | - Juan A Conesa
- Department of Chemical Engineering, University of Alicante, P.O. Box 99, 03080, Alicante, Spain.
- Institute of Chemical Process Engineering, University of Alicante, P.O. Box 99, 03080, Alicante, Spain.
| |
Collapse
|
3
|
Vinković K, Vukoje M, Rožić M, Galić N. Bisphenol A monitoring during anaerobic degradation of papers with thermochromic prints in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118117. [PMID: 37182486 DOI: 10.1016/j.jenvman.2023.118117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/02/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Pseudoestrogene bisphenol A (BPA) can be important ingredient of thermochromic inks, increasingly used materials in thermal printing paper, security printing, advertising, design and as temperature indicators in medicine and food industry. BPA mass fraction in thermochromic inks can be up to several percent. Hence, disposal of items with thermochromic prints pose a risk of environmental pollution. In this work BPA mass fraction was monitored during anaerobic degradation of papers with thermochromic prints in soil in both matrices: papers and soil. The degradation conditions simulated deeper layers of waste at a landfill site. Six types of papers with prints of thermochromic ink containing 2% of BPA were subjected to anaerobic degradation over up to 150 days. Initial mass fractions of BPA in papers decreased form (126-460) μg/g to (<QL - 45) μg/g after 150 days. BPA amounts were reduced 10 to 50 times depending on the paper type: least for synthetic paper and most for wood-free coated. For soil analysis new HPLC-UV method was developed and validated. The method was linear from 0.75 ng/g to 0.6 μg/g of BPA in soil with correlation coefficient of 0.9994. Method precision was 4.4%, accuracy 83% and detection limit 0.9 ng/g. Expectedly, amount of BPA in soil was increasing during the experiment. Mass fractions of BPA in soil were from not detected in earlier stage of degradation to (4.9-23.2) ng/g after 150 days. Final BPA amounts in soil were similar to those found in industrial, urban and agricultural soils worldwide. Hence, BPA from papers with thermochromic prints was notably decomposed, and contaminated soil had the capacity to absorb and decompose BPA even under anaerobic conditions. After 150 days of anaerobic degradation, only up to 1.86% of BPA contained in paper prints was found in soil, whilst, on average, 4% of initial BPA remained in paper.
Collapse
Affiliation(s)
- Kristinka Vinković
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, HR-10000 Zagreb, Croatia.
| | - Marina Vukoje
- University of Zagreb Faculty of Graphic Arts, Getaldićeva 2, 10000, Zagreb, Croatia.
| | - Mirela Rožić
- University of Zagreb Faculty of Graphic Arts, Getaldićeva 2, 10000, Zagreb, Croatia.
| | - Nives Galić
- University of Zagreb Faculty of Science, Department of Chemistry, Horvatovac 102a, HR-10000 Zagreb, Croatia.
| |
Collapse
|
4
|
Arce M, Ortiz M, Sanllorente S. HPLC-DAD and PARAFAC for the determination of bisphenol-A and another four bisphenols migrating from BPA-free polycarbonate glasses. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Zhang L, Gan Y, Wu B, Chen Z, Ren J, Zhang C, Zhang S, Chen C, Pan B. Photochemical Synthesis of Selenium Nanospheres of Tunable Size and Colloidal Stability with Simple Diketones. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9793-9801. [PMID: 34351154 DOI: 10.1021/acs.langmuir.1c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Temporal and spatial segregations are two fundamental requirements for the successful synthesis of nanoparticles (NPs). To obtain colloidally stable selenium nanospheres (SeNSs), surfactants or polymers are generally needed as structure-directing agents or stabilizers in the reduction approaches for SeNP synthesis. The addition of such chemicals sacrifices the purity of the obtained SeNPs and, therefore, is detrimental to the applications. Here, for the first time, we report that low-molecular weight (less than six carbons) diketones are excellent photoreductants for green and tunable synthesis of SeNPs, owing to their merits in temporal and spatial control. With simple diketones as the photoreductants, the resultant SeNPs were pure and colloidally stable with nice photoelectronic properties. This finding not only provides a useful strategy for the synthesis of SeNPs but also might be a milestone in the development of ketone photochemistry.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yonghai Gan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingdang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhihao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jie Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Description of Thermochromic Offset Prints Morphologies Depending on Printing Substrate. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the influence of physio-chemical properties of four printing substrates, fibrous papers (filter, bulky, recycled), and polymer film (synthetic paper) on the size of the thermochromic (TC) prints microcapsules was investigated. Results indicate that interaction between thermochromic ink and printing substrate determine the print morphology, i.e., porosity and roughness of printing substrate affect dimensions of TC microcapsules of resulting prints, while ink adhesion affects dimensional changes during heating–cooling cycle. Atomic force microscopy (AFM) analysis showed that microcapsules of the prints, on the surface of the smoothest synthetic paper, possess the smallest diameter and height, while, on the most porous and the most roughened surface of F paper, the microcapsules of the prints possess the highest diameter and height. By increasing the temperature to 40 °C, the biggest changes in the shape of the microcapsules (increase in height and decrease in diameter) were obtained using the surface of the hydrophilic filter paper. While using the recycled paper surface, the situation is opposite; the height and diameter of the microcapsules are reduced, and the microcapsules penetrate deeper into the paper structure (due to optimum adhesion). On the bulky paper surfaces, which are more hydrophobic than recycled paper (higher interfacial tension), the increase of temperature does not cause any significant changes in the shape and position of the microcapsules. The same behavior is observed using hydrophobic non-porous synthetic paper.
Collapse
|
7
|
Yan X, Chang Y, Qian X. Effect of Concentration of Thermochromic Ink on Performance of Waterborne Finish Films for the Surface of Cunninghamia Lanceolata. Polymers (Basel) 2020; 12:E552. [PMID: 32138270 PMCID: PMC7182879 DOI: 10.3390/polym12030552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 11/23/2022] Open
Abstract
Using Cunninghamia lanceolata as a substrate, the thermochromic ink was added to the waterborne finish to test the optical properties and mechanical properties of the finish film. The results showed that the discoloration performance of the finish film with 15.0% and 30.0% of the thermochromic ink was better. The gloss of the finish film changes irregularly when the concentration increases. The finish film with a thermochromic ink concentration of 10.0% has the highest gloss, and with a concentration of 30.0% has the lowest gloss. When the thermochromic ink concentration exceeds 15.0%, the impact resistance of the finish film is slightly enhanced. The concentration is not related to the liquid resistance of the finish film. When the thermochromic ink concentration was 0-15.0%, the particle distribution uniform reunion was not much. The discoloration mechanism of discolored finish film can be considered to be as follows. After adding thermochromic ink, when the finish film temperature rises, it fades from red to colorless. When the temperature is lowered, the thermochromic ink changes to its original colour again, and the thermochromic effect is stable and sustainable. On the basis of the above results, when the thermochromic ink concentration is 15.0%, the general performance of the waterborne finish film on the Cunninghamia lanceolata surface is the best. This study provides new prospects in using thermochromic ink for waterborne finish film.
Collapse
Affiliation(s)
- Xiaoxing Yan
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China; (Y.C.); (X.Q.)
| | | | | |
Collapse
|
8
|
Vinković K, Vukoje M, Rožić M, Galić N. Migration of pseudoestrogen bisphenol A from various types of paper with thermochromic prints to artificial sweat solutions. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1704775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Kristinka Vinković
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Marina Vukoje
- Faculty of Graphic Arts, University of Zagreb, Zagreb, Croatia
| | - Mirela Rožić
- Faculty of Graphic Arts, University of Zagreb, Zagreb, Croatia
| | - Nives Galić
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
9
|
Dreolin N, Aznar M, Moret S, Nerin C. Development and validation of a LC–MS/MS method for the analysis of bisphenol a in polyethylene terephthalate. Food Chem 2019; 274:246-253. [DOI: 10.1016/j.foodchem.2018.08.109] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/13/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
|