1
|
Chen J, Li LF, Lin ZZ, Cheng XL, Wei F, Ma SC. A quality-comprehensive-evaluation-index-based model for evaluating traditional Chinese medicine quality. Chin Med 2023; 18:89. [PMID: 37501143 PMCID: PMC10375775 DOI: 10.1186/s13020-023-00782-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Evaluating traditional Chinese medicine (TCM) quality is a powerful method to ensure TCM safety. TCM quality evaluation methods primarily include characterization evaluations and separate physical, chemical, and biological evaluations; however, these approaches have limitations. Nevertheless, researchers have recently integrated evaluation methods, advancing the emergence of frontier research tools, such as TCM quality markers (Q-markers). These studies are largely based on biological activity, with weak correlations between the quality indices and quality. However, these TCM quality indices focus on the individual efficacies of single bioactive components and, therefore, do not accurately represent the TCM quality. Conventionally, provenance, place of origin, preparation, and processing are the key attributes influencing TCM quality. In this study, we identified TCM-attribute-based quality indices and developed a comprehensive multiweighted multi-index-based TCM quality composite evaluation index (QCEI) for grading TCM quality. METHODS The area of origin, number of growth years, and harvest season are considered key TCM quality attributes. In this study, licorice was the model TCM to investigate the quality indicators associated with key factors that are considered to influence TCM quality using multivariate statistical analysis, identify biological-evaluation-based pharmacological activity indicators by network pharmacology, establish real quality indicators, and develop a QCEI-based model for grading TCM quality using a machine learning model. Finally, to determine whether different licorice quality grades differently reduced the inflammatory response, TNF-α and IL-1β levels were measured in RAW 264.7 cells using ELISA analysis. RESULTS The 21 quality indices are suitable candidates for establishing a method for grading licorice quality. A computer model was established using SVM analysis to predict the TCM quality composite evaluation index (TCM QCEI). The tenfold cross validation accuracy was 90.26%. Licorice diameter; total flavonoid content; similarities of HPLC chromatogram fingerprints recorded at 250 and 330 nm; contents of liquiritin apioside, liquiritin, glycyrrhizic acid, and liquiritigenin; and pharmacological activity quality index were identified as the key indices for constructing the model for evaluating licorice quality and determining which model contribution rates were proportionally weighted in the model. The ELISA analysis results preliminarily suggest that the inflammatory responses were likely better reduced by premium-grade than by first-class licorice. CONCLUSIONS In the present study, traditional sensory characterization and modern standardized processes based on production process and pharmacological efficacy evaluation were integrated for use in the assessment of TCM quality. Multidimensional quality evaluation indices were integrated with a machine learning model to identify key quality indices and their corresponding weight coefficients, to establish a multiweighted multi-index and comprehensive quality index, and to construct a QCEI-based model for grading TCM quality. Our results could facilitate and guide the development of TCM quality control research.
Collapse
Affiliation(s)
- Jia Chen
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 31, Huatuo Road, Daxing District, Beijing, 102629, China.
| | - Lin-Fu Li
- College of Pharmacy, Gannan Medical University, No. 1, Yixueyuan Road, Zhanggong District, Ganzhou, 341000, China
| | - Zhao-Zhou Lin
- Fengtai District, Beijing Tongrentang Technology Development Co., Ltd., No. 20, Nansanhuan Zhonglu Road, Beijing, 100075, China
| | - Xian-Long Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 31, Huatuo Road, Daxing District, Beijing, 102629, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 31, Huatuo Road, Daxing District, Beijing, 102629, China.
| | - Shuang-Cheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 31, Huatuo Road, Daxing District, Beijing, 102629, China.
| |
Collapse
|
2
|
Chen J, Cheng XL, Li LF, Dai SY, Wang YD, Li MH, Guo XH, Wei F, Ma SC. A general procedure for establishing composite quality evaluation indices based on key quality attributes of traditional Chinese medicine. J Pharm Biomed Anal 2022; 207:114415. [PMID: 34655988 DOI: 10.1016/j.jpba.2021.114415] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/15/2023]
Abstract
Licorice, a medicinal herb and food flavor ingredient, has been widely used in traditional Chinese medicine (TCM) for the past 4000 years. In this study, we propose a new quality evaluation approach for licorice quality control based on the key quality attributes commonly used in TCM. The high quality of TCM formulations is ensured by verifying the genuine origin and implementing good agricultural and collection practices for each medicinal herb. In our study, the genuine production area, the harvest season, and the number of growth years were considered the key quality attributes of TCM. To ensure the representativeness of our analysis, we obtained a total of 158 licorice sample batches that differed in the number of growth years, the location of the production areas, and the season for harvesting. Initially, the 158 sample batches were subjected to ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS). A preliminary screen identified 11 licorice compounds related to the three key quality attributes of TCM . An analysis by ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-TQ-MS/MS) verified the presence of 34 compounds in all licorice samples. These 34 compounds included the 11 compounds related to the three key quality attributes of the samples, along with other bioactive components identified in previous studies. After using UHPLC-TQ-MS/MS to assess the signal peak intensities of the 34 compounds, we selected 17 licorice compounds to establish sample content evaluation indices, which were determined by high-performance liquid chromatography at four different wavelengths in all 158 licorice sample batches. Finally, the screen identified nine compounds that were closely associated with the quality attributes of licorice based on principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Our results suggested that liquiritin and eight other compounds could be used as quality control indicators of licorice, which provided a foundation to establish the TCM quality composite evaluation index (TCM QCEI). In summary, this research concept can serve as a reference for research on quality markers and the evaluation of TCM.
Collapse
Affiliation(s)
- Jia Chen
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2, TiantanXili, Dongcheng District, Beijing, 100050, China
| | - Xian-Long Cheng
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2, TiantanXili, Dongcheng District, Beijing, 100050, China.
| | - Lin-Fu Li
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Sheng-Yun Dai
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2, TiantanXili, Dongcheng District, Beijing, 100050, China
| | - Ya-Dan Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2, TiantanXili, Dongcheng District, Beijing, 100050, China
| | - Ming-Hua Li
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2, TiantanXili, Dongcheng District, Beijing, 100050, China
| | - Xiao-Han Guo
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2, TiantanXili, Dongcheng District, Beijing, 100050, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2, TiantanXili, Dongcheng District, Beijing, 100050, China.
| | - Shuang-Cheng Ma
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), No. 2, TiantanXili, Dongcheng District, Beijing, 100050, China.
| |
Collapse
|
3
|
Chen J, Li LF, Hu XR, Wei F, Ma S. Network Pharmacology-Based Strategy for Elucidating the Molecular Basis Forthe Pharmacologic Effects of Licorice ( Glycyrrhiza spp.). Front Pharmacol 2021; 12:590477. [PMID: 33995004 PMCID: PMC8114075 DOI: 10.3389/fphar.2021.590477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Licorice (Glycyrrhiza spp.) is used widely in traditional Chinese medicine (TCM) due to its numerous pharmacologic effects. However, the mechanisms of action of the chemical constituents of licorice and their structure–function relationships are not fully understood. To address these points, we analyzed the chemical compounds in licorice listed in the TCM Systems Pharmacology database and TCM Integrated database. Target proteins of the compounds were predicted using Integrative Pharmacology-based Research Platform of TCM v2.0. Information on the pharmacologic effects of licorice was obtained from the 2020 Chinese Pharmacopoeia, and disease-related genes that have been linked to these effects were identified from the Encyclopedia of TCM database. Pathway analyses using the Kyoto Encyclopedia of Genes and Genomes database were carried out for target proteins, and pharmacologic networks were constructed based on drug target–disease-related gene and protein–protein interactions. A total of 451 compounds were analyzed, of which 211 were from the medicinal parts of the licorice plant. The 241 putative targets of 106 bioactive compounds in licorice comprised 52 flavonoids, 47 triterpenoids, and seven coumarins. Four distinct pharmacologic effects of licorice were defined: 61 major hubs were the putative targets of 23 compounds in heat-clearing and detoxifying effects; 68 were targets of six compounds in spleen-invigorating and qi-replenishing effects; 28 were targets of six compounds in phlegm-expulsion and cough-suppressant effects; 25 compounds were targets of six compounds in spasm-relieving and analgesic effects. The major bioactive compounds of licorice were identified by ultra-high-performance liquid chromatography–quadrupole time-of-flight–tandem mass spectrometry. The anti-inflammatory properties of liquiritin apioside, liquiritigenin, glycyrrhizic acid and isoliquiritin apioside were demonstrated by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. Liquiritin apioside, liquiritigenin, isoliquiritin, isoliquiritin apioside, kaempferol, and kumatakenin were the main active flavonoids, and 18α- and 18β-glycyrrhetinic acid were the main active triterpenoids of licorice. The former were associated with heat-clearing and detoxifying effects, whereas the latter were implicated in the other three pharmacologic effects. Thus, the compounds in licorice have distinct pharmacologic effects according to their chemical structure. These results provide a reference for investigating the potential of licorice in treatment of various diseases.
Collapse
Affiliation(s)
- Jia Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Lin-Fu Li
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xiao-Ru Hu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Shuangcheng Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing, China
| |
Collapse
|