1
|
Aretaki MA, Desmet J, Viana M, van Drooge BL. Comprehensive methodology for semi-volatile organic compound determination in ambient air with emphasis on polycyclic aromatic hydrocarbons analysis by GC-MS/MS. J Chromatogr A 2024; 1730:465086. [PMID: 38941797 DOI: 10.1016/j.chroma.2024.465086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024]
Abstract
Polycyclic aromatic hydrocarbons are air pollutants that affect the human health and the environment, and their accurate determination in outdoor and indoor environments is important. This study presents a methodology for sampling and analysis of semi-volatile compounds in ambient air with emphasis on the polycyclic aromatic hydrocarbons, collected with low-volume pumps (4.8 m3) in unconditioned solid phase extraction cartridges (Isolute ENV+). Sampling in SPE cartridges with low-volume pumps allows the collection of both gas and particulate phase compounds in indoor as well as outdoor environments, and reduces the number of extraction steps required as well as the solvent volume used for extraction. Analysis of the 16 US-EPA priority PAHs after extraction was conducted by GC-MS/MS with recoveries of the PAHs 40-118 %. No breakthrough was detected during sampling. Moreover, the methodology includes storage test to assess the conservation of PAHs in the SPE cartridges in heat-sealable Kapac bags; simulating transport from sampling sites to laboratory, and storage under room, cold and frozen conditions at different time-intervals, up to 3 months after sampling. The results showed that concentration levels remained constant across various storage time intervals and temperatures, with naphthalene and acenaphthylene being the only exceptions, showing high blank levels for the first and losses at room temperature for the later. The method quantification limits, including sampling, storage and GC-MS/MS analysis ranged from 2000 pg m-3 for naphthalene and 300 pg m-3 for phenanthrene to less than 20.0 pg m-3 for higher molecular and less volatile PAHs, such as benzo[a]pyrene (LOQ = 8.0 pg m-3). The feasibility of the method was tested by sampling indoors under urban background air conditions, showing individual PAH concentrations 4 to 10 times higher than their method quantification limits.
Collapse
Affiliation(s)
- Maria A Aretaki
- Institute for Environmental Assessment and Water Research (IDÆA-CSIC), Jordi Girona, 18, Barcelona, 08034, Spain; Department of Analytical Chemistry and the Environment, PhD program of University of Barcelona (UB), Martí I Franqués 1-11, Barcelona, 08028, Spain
| | - Judith Desmet
- Institute for Environmental Assessment and Water Research (IDÆA-CSIC), Jordi Girona, 18, Barcelona, 08034, Spain; Department of Analytical Chemistry and the Environment, PhD program of University of Barcelona (UB), Martí I Franqués 1-11, Barcelona, 08028, Spain
| | - Mar Viana
- Institute for Environmental Assessment and Water Research (IDÆA-CSIC), Jordi Girona, 18, Barcelona, 08034, Spain
| | - Barend L van Drooge
- Institute for Environmental Assessment and Water Research (IDÆA-CSIC), Jordi Girona, 18, Barcelona, 08034, Spain.
| |
Collapse
|
2
|
Jeong J, Kim G, Lee JG. A review of food contamination with nitrated and oxygenated polycyclic aromatic hydrocarbons: toxicity, analysis, occurrence, and risk assessment. Food Sci Biotechnol 2024; 33:2261-2274. [PMID: 39145122 PMCID: PMC11319709 DOI: 10.1007/s10068-024-01653-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 08/16/2024] Open
Abstract
Prolonged exposure to polycyclic aromatic hydrocarbons (PAHs) and their derivatives, particularly nitrated polycyclic aromatic hydrocarbons (NPAHs) and oxygenated polycyclic aromatic hydrocarbons (OPAHs), can result in adverse health effects and may carry higher toxicity risks compared to PAHs alone. Various extraction methods have been utilized for PAHs derivatives from food samples. The analytes are then analyzed using gas chromatography/mass spectrometry and high-performance liquid chromatography techniques. PAHs derivatives are increasingly being detected in the environment, prompting scrutiny from numerous researchers. Similarly, their presence in food is becoming a significant concern. The elevated levels of PAH derivatives found in smoked food may result in detrimental dietary exposure and pose potential health hazards. Furthermore, investigating the level of exposure to these contaminants in food is imperative, as their consumption by humans carries inherent risks. Consequently, this review concentrates on the toxicity, analysis, occurrence, and risk evaluation of NPAHs and OPAHs present in food sources.
Collapse
Affiliation(s)
- Jihun Jeong
- Department of Food and Biotechnology, National Seoul University of Science and Technology, Seoul, 01811 South Korea
| | - Geehyeon Kim
- Department of Food and Biotechnology, National Seoul University of Science and Technology, Seoul, 01811 South Korea
| | - Joon-Goo Lee
- Department of Food and Biotechnology, National Seoul University of Science and Technology, Seoul, 01811 South Korea
| |
Collapse
|
3
|
Alves ICB, Dos Santos JRN, Marques EP, Sousa JKC, Beluomini MA, Stradiotto NR, Marques ALB. Electrochemical sensor based on carbon nanotube decorated with manganese oxide nanoparticles for naphthalene determination. ANAL SCI 2023; 39:1681-1692. [PMID: 37269536 DOI: 10.1007/s44211-023-00374-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
In this work, an electrochemical sensor was developed for the determination of naphthalene (NaP) in well water samples, based on a glass carbon electrode (GCE) modified as a nanocomposite of manganese oxides (MnOx) and COOH-functionalized multi-walled carbon nanotubes (MWCNT). The synthesis of MnOx nanoparticles was performed by the sol-gel method. The nanocomposite was obtained by mixing MnOx and MWCNT with the aid of ultrasound, followed by stirring for 24 h. Surface modification facilitated the electron transfer process through the MnOx/MWCNT/GCE composite, which was used as an electrochemical sensor. The sensor and its material were characterized by cyclic voltammetry (CV), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Important parameters influencing electrochemical sensor performance (pH, composite ratios) were investigated and optimized. The MnOx/MWCNT/GCE sensor showed a wide linear range of 2.0-16.0 μM, a detection limit of 0.5 μM and a quantification limit of 1.8 μM, in addition to satisfactory repeatability (RSD of 7.8%) and stability (900 s) in the determination of NaP. The determination of NaP in a sample of water from a gas station well using the proposed sensor showed results with recovery between 98.1 and 103.3%. The results obtained suggest that the MnOx/MWCNT/GCE electrode has great potential for application in the detection of NaP in well water.
Collapse
Affiliation(s)
| | | | - Edmar Pereira Marques
- NEEP (LPQA & LAPQAP), PPG-BIONORTE, Federal University of Maranhão (UFMA), São Luis, MA, Brazil
| | | | | | | | | |
Collapse
|
4
|
Menezes HGP, Batista IGDS, de Oliveira JB, Ferreira VMV, de Souza PP, Rezende PS. Trapping of polycyclic aromatic hydrocarbons in vehicle exhaust using an in-tube extraction device for analysis by gas chromatography-barrier ionization discharge detection. J Chromatogr A 2023; 1699:463995. [PMID: 37146373 DOI: 10.1016/j.chroma.2023.463995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 05/07/2023]
Abstract
This work presents a methodology for polycyclic aromatic hydrocarbons (PAHs) trapping from vehicular emissions using an in-tube extraction device (IT-FEx). Trapping selectivity studies were conducted, evaluating the interaction profile between the aromatic compounds and the polymeric phase (composed of polydimethylsiloxane and internal to the IT-FEx devices), as in an aqueous equilibrium system (25 min of sampling), and as in gaseous dynamic phase (30 s of sampling), regarding a qualitative evaluation. The adsorption profiles were similar, with greater affinity for medium-sized PAHs (four aromatic rings) than for the smaller (one to three rings) and larger (five to six rings). The device was attached to a vehicle emission sampler to evaluate the qualitative emission of diesel-powered vehicles. Certain PAHs, such as phenanthrene, fluoranthene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[k]fluoranthene, were effectively trapped by the IT-FEx device and detected by the GC-BID analysis. Finally, it was possible to develop a process that combined the steps of sample preparation and instrumental analysis, using the IT-FEx device and applying it to the gaseous matrix in the dynamic phase; until then, little was elucidated regarding the use of this apparatus. This sampling device, combined with analysis by gas chromatography with a barrier ionization discharge detector (GC-BID), is a powerful tool for identifying many compounds from vehicular emissions and does not require solvents in sample preparation.
Collapse
Affiliation(s)
| | - Isis Gabriella da Silva Batista
- Federal Center for Technological Education of Minas Gerais State, Avenida Amazonas, 5855, Belo Horizonte, MG 30510-000, Brazil
| | - Jhonatan Bispo de Oliveira
- Federal Center for Technological Education of Minas Gerais State, Avenida Amazonas, 5855, Belo Horizonte, MG 30510-000, Brazil
| | | | - Patterson Patrício de Souza
- Federal Center for Technological Education of Minas Gerais State, Avenida Amazonas, 5855, Belo Horizonte, MG 30510-000, Brazil
| | - Patrícia Sueli Rezende
- Federal Center for Technological Education of Minas Gerais State, Avenida Amazonas, 5855, Belo Horizonte, MG 30510-000, Brazil.
| |
Collapse
|
5
|
Simultaneous Dispersive Liquid-Liquid Microextraction and Determination of Different Polycyclic Aromatic Hydrocarbons in Surface Water. Molecules 2022; 27:molecules27238586. [PMID: 36500677 PMCID: PMC9736002 DOI: 10.3390/molecules27238586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants of water, and their determination at trace levels in the aquatic ecosystems is essential. In this work, an ultrasound-assisted dispersive liquid-liquid microextraction (DLLME) procedure was suggested utilizing a binary dispersive agent for recovery of different molecular weight polycyclic aromatic hydrocarbons (PAHs) from waters. The detection was carried out by gas chromatography-mass spectrometry (GC-MS) as well as high-performance liquid chromatography with fluorescence and diode-array detection (HPLC-FD/PDA). The method was optimized for the extraction of analytes with respect to the mixture composition, ratios of components, ultrasonication time and centrifugation parameters. The analytical schemes for PAHs extraction from water samples using different ratios of extraction and dispersive solvents are reported. The mixture consisting of chloroform and methanol was applied for the extraction of PAHs containing two or three fused aromatic rings; the mixture of chloroform and acetonitrile is suitable for PAHs containing more than four aromatic rings. The mixture of chloroform:acetone + acetonitrile was applied in the universal scheme and allowed for the simultaneous extraction of 20 PAHs with different structures. The developed sample preparation schemes were combined with GC-MS and HPLC-FD/PDA, which allowed us to determine the analytes at low concentrations (from 0.0002 µg/L) with the recoveries exceeding 80% and relative standard deviations of about 8%. The developed methods for the determination of 20 PAHs were applied to the analysis of water samples from the Karasun Lake (Krasnodar), Azov Sea (Temryuk) and Black Sea (Sochi).
Collapse
|
6
|
Singh L, Agarwal T, Simal-Gandara J. Summarizing minimization of polycyclic aromatic hydrocarbons in thermally processed foods by different strategies. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Olenin AY, Yagov VV. Using the Turn-On Fluorescence Effect in Chemical and Biochemical Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822090088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Song N, Tian Y, Luo Z, Dai J, Liu Y, Duan Y. Advances in pretreatment and analysis methods of aromatic hydrocarbons in soil. RSC Adv 2022; 12:6099-6113. [PMID: 35424557 PMCID: PMC8981609 DOI: 10.1039/d1ra08633b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
Benzene compounds that are prevalent in the soil as organic pollutants mainly include BTEX (benzene, toluene, ethylbenzene, and three xylene isomers) and PAHs (polycyclic aromatic hydrocarbons). These pose a severe threat to many aspects of human health. Therefore, the accurate measurement of BTEX and PAHs concentrations in the soil is of great importance. The samples for analysis of BTEX and PAHs need to be suitable for the various detection methods after pretreatment, which include Soxhlet extraction, ultrasonic extraction, solid-phase microextraction, supercritical extraction, and needle trap. The detection techniques mainly consist of gas chromatography (GC), mass spectrometry (MS), and online sensors, and provide comprehensive information on contaminants in the soil. Their performance is evaluated in terms of sensitivity, selectivity, and recovery. Recently, there has been rapid progress in the pretreatment and analysis methods for the quantitative and qualitative analyses of BTEX and PAHs. Therefore, it is necessary to produce a timely and in-depth review of the emerging pretreatment and analysis methods, which is unfortunately absent from the recent literature. In this work, state-of-art extraction techniques and analytical methods have been summarized for the determination of BTEX and PAHs in soil, with a particular focus on the potential and limitations of the respective methods for different aromatic hydrocarbons. Accordingly, the paper will describe the basic methodological knowledge, as well as the recent advancement of pretreatment and analysis methods for samples containing BTEX and PAHs.
Collapse
Affiliation(s)
- Na Song
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Jianxiong Dai
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Yan Liu
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| |
Collapse
|
9
|
Bertoz V, Purcaro G, Conchione C, Moret S. A Review on the Occurrence and Analytical Determination of PAHs in Olive Oils. Foods 2021; 10:324. [PMID: 33546477 PMCID: PMC7913741 DOI: 10.3390/foods10020324] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 01/26/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental and processing contaminants, which may contaminate vegetable oils due to atmospheric fall-out or bad production practices. Due to their carcinogenic and toxic effects, surveillance schemes and mitigation strategies are needed to monitor human exposure to PAHs. In particular, due to the lipophilic nature of these substances, edible oils may present unsafe levels of these compounds. Among these, olive oil, and in particular extra virgin olive oil, is a high-value commodity, also known for its health benefits. Therefore, the occurrence of contaminants in this product is not only of health concern but also causes economic and image damage. In this review, an overview of the occurrence of PAHs in all categories of olive oil is provided, as well as a description of the official methods available and the analytical developments in the last 10 years.
Collapse
Affiliation(s)
- Valentina Bertoz
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy; (V.B.); (C.C.); (S.M.)
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège Bât, G1 Chimie des Agro-Biosystèmes, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Chiara Conchione
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy; (V.B.); (C.C.); (S.M.)
| | - Sabrina Moret
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy; (V.B.); (C.C.); (S.M.)
| |
Collapse
|