1
|
Lu J, Li C, Guo Y, Feng Y, Song Y, Li R, Tian L, Wang J. Solid-state Ru(bpy) 32+ electrochemiluminescence sensor for trace detection of fenpropathrin using loofah sponge-like carbon nanofibers and CdS. Mikrochim Acta 2024; 191:570. [PMID: 39218927 DOI: 10.1007/s00604-024-06647-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Loofah sponge-like carbon nanofibers (LF-Co,N/CNFs) were utilized as a carrier for Ru(bpy)32+, and then combined with CdS to create a novel solid-state electrochemiluminescence sensor capable of detecting trace amounts of fenpropathrin. LF-Co,N/CNFs, obtained through the high-temperature pyrolysis of ZIF-67 coaxial electrospinning fibers, were characterized by a loofah-like morphology and exhibited a significant specific surface area and porosity. Apart from serving as a carrier, LF-Co,N/CNFs also functioned as a luminescence accelerator, enhancing the system's luminescence efficiency by facilitating electron transmission and reducing the transmission distance. The inclusion of CdS in the luminescence reaction, in conjunction with Ru(bpy)32+, further boosted the sensor's luminescence signal. The resulting sensor demonstrated a satisfactory signal, with fenpropathrin causing significant quenching of the ECL signal. Under optimized conditions, a linear relationship between the signal quench value and fenpropathrin concentration in the range 1 × 10-12 to 1 × 10-6 M was observed, with a detection limit of 3.3 × 10-13 M (S/N = 3). This developed sensor is characterized by its simplicity, sensitivity, and successful application in detecting fenpropathrin in real samples. The study not only presents a straightforward detection platform for fenpropathrin but also introduces new avenues for the rapid determination of various food contaminants, thereby expanding the utility of carbon fibers in electrochemiluminescence sensors.
Collapse
Affiliation(s)
- Juan Lu
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China.
- Technological Innovation Laboratory for Research and Development of Economic Plants and Edible and Medicinal Fungi in Cold Region of Jilin Province, Changchun, 130032, P.R. China.
| | - Chao Li
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Yanjia Guo
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Yongjia Feng
- Zengcheng XiangJiang School, Guangzhou, 511340, P.R. China
| | - Yujia Song
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Ruidan Li
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Jing Wang
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China.
- Technological Innovation Laboratory for Research and Development of Economic Plants and Edible and Medicinal Fungi in Cold Region of Jilin Province, Changchun, 130032, P.R. China.
| |
Collapse
|
2
|
Wang X, Huang H, Zhong S, Shentu X, Ye Z, Yu X. Carboxymethyl chitosan-modified UiO-66 for the rapid detection of fenpropathrin in grains. Int J Biol Macromol 2024; 265:131032. [PMID: 38521295 DOI: 10.1016/j.ijbiomac.2024.131032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Fenpropathrin residues in grain are potentially harmful to humans. Therefore, a fluorimetric lateral flow immunoassay using a zirconium-based organic skeleton (UiO-66) as a signal marker was developed for detecting fenpropathrin. Herein, carboxymethyl chitosan (CMCS) was used to modify UiO-66 and improve its water solubility to facilitate stable binding with sodium fluorescein (NaFL). This resulted in formation of a new fluorescent probe that is more suitable for lateral flow immunoassay (LFIA). The materials were characterized via electron microscopy, Fourier-transform infrared spectroscopy, and powder X-ray diffraction. CMCS and NaFL were successfully bound to UiO-66. Under optimized conditions, the constructed NaFL/UiO-66@CMCS-LFIA exhibited a good linear relationship within the range of 0.98-62.5 μg/L, with a detection limit of 3.91 μg/L. This probe was fourfold more sensitive than traditional colloidal gold nanoparticle-based LFIA. Finally, NaFL/UiO-66@CMCS-LFIA was successfully applied to detect fenpropathrin in wheat and maize samples. The detection limit was 1.56 μg/kg and recoveries ranged from 96.58 % to 118.56 %. This study provides a sensitive, stable, and convenient method for the rapid detection of pesticide residues.
Collapse
Affiliation(s)
- Xiaoyao Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Haizhi Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Siyao Zhong
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, Zhejiang, People's Republic of China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Li M, Pan Q, Wang J, Wang Z, Peng C. Machine learning-assisted fluorescence sensor array for qualitative and quantitative analysis of pyrethroid pesticides. Food Chem 2024; 433:137368. [PMID: 37688823 DOI: 10.1016/j.foodchem.2023.137368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
The simultaneous detection of multiple residues of pyrethroid pesticides (PPs) on vegetables and fruits is still challenging using traditional nanosensing methods due to the high structural similarity of PPs. In this work, sensor arrays composed of three nanocomposite complexes (rhodamine B-CD@Au, rhodamine 6G-CD@Au, and coumarin 6-CD@Au) were constructed to discriminate between structurally similar PPs. Four PPs, deltamethrin, fenvalerate, cyfluthrin, and fenpropathrin, were successfully discriminated. The ability of these sensor units was derived from the different affinity between receptor/analyte and receptor/dye, as well as the non-linear relationship between fluorescence signal and analyte concentration. Upon multivariate pattern recognition analysis, the array performed high-throughput identification of four PPs in unknown samples with 100% classification accuracy. In addition, good accuracy of predicting concentration using the "stepwise prediction" strategy combined with the machine learning method was achieved.
Collapse
Affiliation(s)
- Min Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Qiuli Pan
- Shandong Institute for Food and Drug Control, Xinluo Road 2749, Jinan, Shandong 250101, PR China
| | - Jun Wang
- Shandong Institute for Food and Drug Control, Xinluo Road 2749, Jinan, Shandong 250101, PR China
| | - Zhouping Wang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China
| | - Chifang Peng
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
4
|
Zhang J, Wang Y, Yu J, Wang Q, Khattak KN, Yang X. Determination of pyrethroids in water samples by dispersive solid-phase extraction coupled with high-performance liquid chromatography. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10813. [PMID: 36440628 DOI: 10.1002/wer.10813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
A metal-organic framework UiO-66 was prepared and used as a sorbent for dispersive solid-phase extraction combined with high-performance liquid chromatography (DSPE-HPLC) for extracting and determining four pyrethroids in water samples for the first time. The as-synthesized material was confirmed by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and N2 adsorption-desorption analysis. In addition, several important parameters affecting DSPE efficiency, including sorbent dosage, extraction time, salt concentration, pH, elution solvent, elution volume, and elution time, were optimized. Under the optimum conditions, the UiO-66 based on the DSPE-HPLC method displayed a wide linear range (10-1000 ng/ml), low limits of detection (2.8-3.5 ng/ml), and good precision (relative standard deviations [RSDs] < 3%) for the four pyrethroids. The recoveries at different spiked levels ranged from 89.3% to 107.7%. In addition, UiO-66 featured good reusability and reproducibility. The results demonstrated that π-π stacking interactions, hydrophobic interactions, and van der Waals forces between UiO-66 and the four pyrethroids played a crucial role in the adsorption process. Meanwhile, the maximum extraction capability could be obtained within 5 min. Thus, the DSPE coupled with the UiO-66 sorbent can be successfully used in the analysis of four pyrethroids in environmental water samples. PRACTITIONER POINTS: Simultaneous determination of four pyrethroids using the developed UiO-66-based DSPE-HPLC method in water samples. The developed method had a short enrichment time, broad linear ranges, a low detection limit, and high enrichment factor. It is showed that π-π stacking interaction, hydrophobic interaction, and van der Waals forces were the main mechanism.
Collapse
Affiliation(s)
- Jie Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Ya Wang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Jun Yu
- Nanchong City Product Quality Supervision and Inspection Institute, Nanchong, China
| | - Qingying Wang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Kashif Nawaz Khattak
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, China
| |
Collapse
|
5
|
Bouyahya A, Sembo-Backonly BS, Favrelle-Huret A, Balieu S, Guillen F, Mesnage V, Karakasyan-Dia C, Lahcini M, Le Cerf D, Gouhier G. New ternary water-soluble support from self-assembly of β-cyclodextrin-ionic liquid and an anionic polymer for a dialysis device. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:271-283. [PMID: 34523096 DOI: 10.1007/s11356-021-16374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
We developed a new hybrid material resulting from an innovative supramolecular tripartite association between an ionic liquid covalently immobilized on primary β-cyclodextrins rim and an anionic water-soluble polymer. Two hydrophilic ternary complexes based on native and permethylated β-cyclodextrins substituted with an ionic liquid and immobilized on poly(styrene sulfonate) (CD-IL+PSS- and CD(OMe)IL+PSS-) were obtained by simple dialysis with a cyclodextrin maximal grafting rate of 25% and 20% on the polymer, respectively. These polyelectrolytes are based on electrostatic interactions between the opposite charges of the imidazolium cation of the ionic liquid and the poly(styrene sulfonate) anion. The inclusion properties of the free cavities of the cyclodextrins and the synergic effect of the polymeric matrix were studied with three reference guests such as phenolphthalein, p-nitrophenol, and 2-anilinonaphthalene-6-sulfonic acid using UV-visible, fluorescent, and NMR spectroscopies. The support has been applied successfully in dialysis device to extract and concentrated aromatic model molecule. This simple and flexible synthetic strategy opens the way to new hybrid materials useful for fast and low-cost ecofriendly extraction techniques relevant for green analytical chemistry.
Collapse
Affiliation(s)
- Asmaa Bouyahya
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan, France
- IMED-Lab, Faculty of Sciences and Techniques, Cadi Ayyad University, Avenue Abdelkrim Elkhattabi, B.P 549, 40000, Marrakech, Morocco
| | - Berthe-Sandra Sembo-Backonly
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan, France
| | - Audrey Favrelle-Huret
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan, France
- Normandie Univ, PBS UMR 6270, UNIROUEN, INSA Rouen, CNRS, 76821, Mont-Saint-Aignan, France
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Sébastien Balieu
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan, France
| | - Frédéric Guillen
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan, France
- Université Toulouse III - Paul Sabatier, SPCMIB UMR CNRS 5068, 118 route de Narbonne, 31062 Cedex 9, Toulouse, France
| | - Valérie Mesnage
- Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2C, 76000, Rouen, France
| | - Carole Karakasyan-Dia
- Normandie Univ, PBS UMR 6270, UNIROUEN, INSA Rouen, CNRS, 76821, Mont-Saint-Aignan, France
| | - Mohammed Lahcini
- IMED-Lab, Faculty of Sciences and Techniques, Cadi Ayyad University, Avenue Abdelkrim Elkhattabi, B.P 549, 40000, Marrakech, Morocco
- Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Didier Le Cerf
- Normandie Univ, PBS UMR 6270, UNIROUEN, INSA Rouen, CNRS, 76821, Mont-Saint-Aignan, France
| | - Géraldine Gouhier
- Normandie Université, COBRA UMR 6014, FR 3038, INSA Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821, Mont-Saint-Aignan, France.
| |
Collapse
|
6
|
Xu Q, Liu Z, Yan C, Lu R, Zhou W. 1-Octyl-3-methylimidazolium hexafluorophosphate-functionalised magnetic poly β-cyclodextrin for magnetic solid-phase extraction ofpyrethroids from tea infusions. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1743-1754. [PMID: 34237240 DOI: 10.1080/19440049.2021.1943004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this study, a novel sorbent, 1-octyl-3-methylimidazolium hexafluorophosphate functionalised magnetic poly β-cyclodextrin, was successfully synthesised and applied to magnetic solid-phase extraction for the determination of pyrethroids in tea infusions. The sorbent was characterised by transmission electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, vibrating sample magnetometer and Brunauer-Emmett-Teller measurement. All factors affecting extraction efficiency, such as sorbent amount, extraction time, ionic strength and desorption conditions, were optimised individually. Under the chosen conditions, wide linearity (2.5-500 μg L-1) with determination coefficients ranging from 0.9995 to 0.9999, low limits of detection of 0.32-0.54 μg L-1 and good precision (intra-day: 2.6-7.0%; inter-day: 3.5-7.6%) were achieved for four pyrethroids in tea infusions. The relative recoveries of target analytes in real tea infusion samples were from 70% to 101% with relative standard deviations lower than 9.1%. We conclude that the proposed method is promising in the detection of pyrethroids in tea infusions.
Collapse
Affiliation(s)
- Qinqin Xu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Zikai Liu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Chen Yan
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Runhua Lu
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Wenfeng Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Chen S, Zheng Y, Shen Z, Li J, Zhu X. Magnetic solid phase extraction based on amino acid ionic liquids magnetic graphene oxide nanomaterials-high performance liquid chromatography for the simultaneous determination of Sudan I–IV. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1856138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Songqing Chen
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| | - Yan Zheng
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| | - Zijin Shen
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| | - Jiawei Li
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
| | - Xiashi Zhu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, PR China
- College of Guangling, Yangzhou University, Yangzhou, PR China
| |
Collapse
|