1
|
Ozon EA, Mati E, Karampelas O, Anuta V, Sarbu I, Musuc AM, Mitran RA, Culita DC, Atkinson I, Anastasescu M, Lupuliasa D, Mitu MA. The development of an innovative method to improve the dissolution performance of rivaroxaban. Heliyon 2024; 10:e33162. [PMID: 39021978 PMCID: PMC11253053 DOI: 10.1016/j.heliyon.2024.e33162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Recent advancements in the formulation of solid dosage forms involving active ingredient-cyclodextrin complexes have garnered considerable attention in pharmaceutical research. While previous studies predominantly focused on incorporating these complexes into solid states, issues regarding incomplete inclusion prompted the exploration of novel methods. In this study, we aimed to develop an innovative approach to integrate liquid-state drug-cyclodextrin inclusion complexes into solid dosage forms. Our investigation centered on rivaroxaban, a hydrophobic compound practically insoluble in water, included in hydroxypropyl-β-cyclodextrin at a 1:1 M ratio, and maintained in a liquid state. To enhance viscosity, hydroxypropyl-cellulose (2 % w/w) was introduced, and the resulting dispersion was sprayed onto the surface of cellulose pellets (CELLETS®780) using a Caleva Mini Coater. The process parameters were meticulously controlled, with atomization air pressure set at 1.1 atm and a fluidizing airflow maintained at 35-45 m3/h. Characterization of the coated cellets, alongside raw materials, was conducted using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) analyses. Physicochemical evaluations affirmed the successful incorporation of rivaroxaban into hydroxypropyl-β-cyclodextrin, with the final cellets demonstrating excellent flowability, compressibility, and adequate hardness. Quantitative analysis via the HPLC-DAD method confirmed a drug loading of 10 mg rivaroxaban/750 mg coated cellets. In vitro dissolution studies were performed in two distinct media: 0.022 M sodium acetate buffer pH 4.5 with 0.2 % sodium dodecyl sulfate (mirroring compendial conditions for 10 mg rivaroxaban tablets), and 0.05 M phosphate buffer pH 6.8 without surfactants, compared to reference capsules and conventional tablet formulations. The experimental capsules exhibited similar release profiles to the commercial product, Xarelto® 10 mg, with enhanced dissolution rates observed within the initial 10 min. This research presents a significant advancement in the development of solid dosage forms incorporating liquid-state drug-cyclodextrin inclusion complexes, offering a promising avenue for improving drug delivery and bioavailability.
Collapse
Affiliation(s)
- Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| | - Erand Mati
- "Titu Maiorescu" University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 16 Sincai Boulevard, 040314, Bucharest, Romania
| | - Oana Karampelas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| | - Valentina Anuta
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| | - Iulian Sarbu
- "Titu Maiorescu" University, Faculty of Pharmacy, Department of Pharmaceutical Physics and Biophysics, Drug Industry and Pharmaceutical Biotechnologies, 16 Sincai Boulevard, 040314, Bucharest, Romania
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Raul-Augustin Mitran
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Daniela C. Culita
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Irina Atkinson
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Mihai Anastasescu
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| | - Mirela Adriana Mitu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| |
Collapse
|
2
|
Kuncahyo I, Indrayati A, Choiri S. Rational Design and Development of a Soluble Mesoporous Carrier for the Solidification of a Preconcentrated Self-Nanoemulsion Formulation. ACS OMEGA 2023; 8:38676-38689. [PMID: 37867712 PMCID: PMC10586445 DOI: 10.1021/acsomega.3c05948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023]
Abstract
The solidification of self-preconcentrated nanoemulsion without changes in nanodroplet formation gains particular consideration due to the interaction between solidified carriers. This work aimed to develop mannitol mesoporous as a soluble carrier for supersaturated self-nanoemulsion (SSNE) using a design of experiment (DoE) approach. The mesoporous carrier was prepared by a spray-drying technique. The type of templating agent (TA) used to form a porous system, the amount of TA, and solid loading in the spray-drying process were studied. Several characterizations were performed for mannitol mesoporous formation, namely, powder X-ray diffraction, thermal analysis, scanning electron microscopy, and surface area analyzer. Solidification of SSNE incorporated into the mesoporous mannitol was carried out, followed by compaction behavior, flowability, and nanodroplet formation. The results revealed several process parameters for preparing the mesoporous mannitol, notably TA, which gained more significant consideration. Solid loading in the mesoporous preparation system reduced the surface area and pore size and did not affect solid SSNE flowability. The amount of TA increased the pore size and volume dramatically as well as the compactibility and flowability. Ammonium carbonate was the preferable TA for preparing the mesoporous carrier, particularly for the nanodroplet formulation process. In addition, synergistic and antagonistic interactions between factors were also observed. The optimized mesoporous carrier was applied for solidification, and there was no difference between SSNE and solid SSNE in the performance of nanodroplet formation.
Collapse
Affiliation(s)
- Ilham Kuncahyo
- Faculty
of Pharmacy, Setia Budi University, Mojosongo, Surakarta 57127, Indonesia
| | - Ana Indrayati
- Faculty
of Pharmacy, Setia Budi University, Mojosongo, Surakarta 57127, Indonesia
| | - Syaiful Choiri
- Pharmaceutical
Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Ir. Sutami 36A, Surakarta 57126, Indonesia
| |
Collapse
|
3
|
Lei X, Zhang G, Yang T, Wu Y, Peng Y, Wang T, Li D, Liu Q, Wang C, Zhang G. Preparation and In Vitro and In Vivo Evaluation of Rectal In Situ Gel of Meloxicam Hydroxypropyl-β-cyclodextrin Inclusion Complex. Molecules 2023; 28:molecules28104099. [PMID: 37241839 DOI: 10.3390/molecules28104099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Meloxicam (MLX) is one of the most effective NSAIDs, but its poor water solubility and low bioavailability limit its clinical application. In this study, we designed a thermosensitive in situ gel of the hydroxypropyl-β-cyclodextrin inclusion complex (MLX/HP-β-CD-ISG) for rectal delivery to improve bioavailability. The best method for preparing MLX/HP-β-CD was the saturated aqueous solution method. The optimal inclusion prescription was optimized using an orthogonal test, and the inclusion complex was evaluated via PXRD, SEM, FTIR and DSC. Then, MLX/HP-β-CD-ISG was characterized regarding the gel properties, release in vitro, and pharmacokinetics in vivo. The inclusion rate of the inclusion complex obtained via the optimal preparation process was 90.32 ± 3.81%. The above four detection methods show that MLX is completely embedded in the HP-β-CD cavity. The developed MLX/HP-β-CD-ISG formulation has a suitable gelation temperature of 33.40 ± 0.17 °C, a gelation time of 57.33 ± 5.13 s, pH of 7.12 ± 0.05, good gelling ability and meets the requirements of rectal preparations. More importantly, MLX/HP-β-CD-ISG significantly improved the absorption and bioavailability of MLX in rats, prolonging the rectal residence time without causing rectal irritation. This study suggests that the MLX/HP-β-CD-ISG can have a wide application prospect with superior therapeutic benefits.
Collapse
Affiliation(s)
- Xiaomeng Lei
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Guansheng Zhang
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- Integrated Chinese and Western Medicine Institute for Children Health & Drug Innovation, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Tao Yang
- College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yuhuan Wu
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Ying Peng
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Tiantian Wang
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Dongxun Li
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Qian Liu
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- Integrated Chinese and Western Medicine Institute for Children Health & Drug Innovation, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Canjian Wang
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Guosong Zhang
- National Engineering Research Center of Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- Integrated Chinese and Western Medicine Institute for Children Health & Drug Innovation, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| |
Collapse
|
4
|
Yu J, Xie J, Xie H, Hu Q, Wu Z, Cai X, Guo Z, Lin J, Han L, Zhang D. Strategies for Taste Masking of Orodispersible Dosage Forms: Time, Concentration, and Perception. Mol Pharm 2022; 19:3007-3025. [PMID: 35848076 DOI: 10.1021/acs.molpharmaceut.2c00199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Orodispersible dosage forms, characterized as quick dissolving and swallowing without water, have recently gained great attention from the pharmaceutical industry, as these forms can satisfy the needs of children, the elderly, and patients suffering from mental illnesses. However, poor taste by thorough exposure of the drugs' dissolution in the oral cavity hinders the effectiveness of the orodispersible dosage forms. To bridge this gap, we put forward three taste-masking strategies with respect to the intensity of time, concentration, and perception. We further investigated the raw material processing, the composition of auxiliary material, formulation techniques, and process control in each strategy and drew conclusions about their effects on taste masking.
Collapse
Affiliation(s)
- Ji Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Huijuan Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Qi Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Xinfu Cai
- Sichuan Guangda Pharmaceutical Co., Ltd., Pengzhou 611930, PR China
| | - Zhiping Guo
- Sichuan Houde Pharmaceutical Technology Co., Ltd., Chengdu 610041, PR China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| |
Collapse
|
5
|
Varga P, Ambrus R, Szabó-Révész P, Kókai D, Burián K, Bella Z, Fenyvesi F, Bartos C. Physico-Chemical, In Vitro and Ex Vivo Characterization of Meloxicam Potassium-Cyclodextrin Nanospheres. Pharmaceutics 2021; 13:pharmaceutics13111883. [PMID: 34834298 PMCID: PMC8617959 DOI: 10.3390/pharmaceutics13111883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 01/02/2023] Open
Abstract
Nasal drug delivery has many beneficial properties, such as avoiding the first pass metabolism and rapid onset of action. However, the limited residence time on the mucosa and limited absorption of certain molecules make the use of various excipients necessary to achieve high bioavailability. The application of mucoadhesive polymers can increase the contact time with the nasal mucosa, and permeation enhancers can enhance the absorption of the drug. We aimed to produce nanoparticles containing meloxicam potassium (MEL-P) by spray drying intended for nasal application. Various cyclodextrins (hydroxypropyl-β-cyclodextrin, α-cyclodextrin) and biocompatible polymers (hyaluronic acid, poly(vinylalcohol)) were used as excipients to increase the permeation of the drug and to prepare mucoadhesive products. Physico-chemical, in vitro and ex vivo biopharmaceutical characterization of the formulations were performed. As a result of spray drying, mucoadhesive nanospheres (average particle size <1 µm) were prepared which contained amorphous MEL-P. Cyclodextrin-MEL-P complexes were formed and the applied excipients increased the in vitro and ex vivo permeability of MEL-P. The highest amount of MEL-P permeated from the α-cyclodextrin-based poly(vinylalcohol)-containing samples in vitro (209 μg/cm2) and ex vivo (1.47 μg/mm2) as well. After further optimization, the resulting formulations may be promising for eliciting a rapid analgesic effect through the nasal route.
Collapse
Affiliation(s)
- Patrícia Varga
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (P.V.); (R.A.); (P.S.-R.)
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (P.V.); (R.A.); (P.S.-R.)
| | - Piroska Szabó-Révész
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (P.V.); (R.A.); (P.S.-R.)
| | - Dávid Kókai
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (D.K.); (K.B.)
| | - Katalin Burián
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (D.K.); (K.B.)
| | - Zsolt Bella
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, 6725 Szeged, Hungary;
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
| | - Csilla Bartos
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary; (P.V.); (R.A.); (P.S.-R.)
- Correspondence:
| |
Collapse
|
6
|
Kuncahyo I, Choiri S, Fudholi A, Martien R, Rohman A. Development of pitavastatin-loaded super-saturable self-nano emulsion: a continues screening and optimization approach using statistical technique. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1957922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ilham Kuncahyo
- Department of Pharmaceutical Science, Setia Budi University, Surakarta, Indonesia
| | - Syaiful Choiri
- Pharmaceutical Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Achmad Fudholi
- Department of Pharmaceutics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ronny Martien
- Department of Pharmaceutics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Abdul Rohman
- Department of Pharmaceutical Chemistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
7
|
Miranda GM, Santos VORE, Bessa JR, Teles YCF, Yahouédéhou SCMA, Goncalves MS, Ribeiro-Filho J. Inclusion Complexes of Non-Steroidal Anti-Inflammatory Drugs with Cyclodextrins: A Systematic Review. Biomolecules 2021; 11:biom11030361. [PMID: 33673414 PMCID: PMC7996898 DOI: 10.3390/biom11030361] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/01/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most widely used classes of medicines in the treatment of inflammation, fever, and pain. However, evidence has demonstrated that these drugs can induce significant toxicity. In the search for innovative strategies to overcome NSAID-related problems, the incorporation of drugs into cyclodextrins (CDs) has demonstrated promising results. This study aims to review the impact of cyclodextrin incorporation on the biopharmaceutical and pharmacological properties of non-steroidal anti-inflammatory drugs. A systematic search for papers published between 2010 and 2020 was carried out using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol and the following search terms: “Complexation”; AND “Cyclodextrin”; AND “non-steroidal anti-inflammatory drug”. A total of 24 different NSAIDs, 12 types of CDs, and 60 distinct inclusion complexes were identified, with meloxicam and β-CD appearing in most studies. The results of the present review suggest that CDs are drug delivery systems capable of improving the pharmacological and biopharmaceutical properties of non-steroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Gustavo Marinho Miranda
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
| | - Vitória Ohana Ramos e Santos
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
| | - Jonatas Reis Bessa
- Institute of Psychology (IPS), Federal University of Bahia (UFBA), Salvador, BA 40170-055, Brazil;
| | - Yanna C. F. Teles
- Agrarian Sciences Center (CCA), Department of Chemistry and Physics (DQF), Federal University of Paraiba (UFPB), Areia, PB 58397-000, Brazil;
| | - Setondji Cocou Modeste Alexandre Yahouédéhou
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
| | - Marilda Souza Goncalves
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
| | - Jaime Ribeiro-Filho
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
- Correspondence: ; Tel.: +55-71-3126-2226
| |
Collapse
|
8
|
Marei HF, Arafa MF, Essa EA, El Maghraby GM. Lidocaine as eutectic forming drug for enhanced transdermal delivery of nonsteroidal anti-inflammatory drugs. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Choiri S, Sulaiman TNS, Rohman A. Assessment of the effect of polymers combination and effervescent component on the drug release of swellable gastro-floating tablet formulation through compartmental modeling-based approach. Drug Dev Ind Pharm 2020; 46:146-158. [PMID: 31894720 DOI: 10.1080/03639045.2019.1711387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this research was to assess the effect of polymer blend and effervescent components on the floating and swelling behaviors of swellable gastro-floating formulation as well as the drug release through a compartmental modeling analysis. Swellable gastro-floating formulation of freely water-soluble drug, metformin HCl as a drug model, was formulated and developed using D-optimal design. Polymer combination between interpolymer complex (IPC) (poly-vinyl acetate-copolymer methacrylate) and hydroxy propyl methyl cellulose (HPMC), and effervescent components were studied and optimized in this work. Several factors affecting the drug release behavior were determined e.g. swelling behavior, erosion behavior, and floating behavior were studied as well as the drug release through compartmental modeling analysis. The results revealed that the hydrophilic polymer was responsible for gas entrapment formed from effervescent reaction, meanwhile IPC contributed on maintaining the swollen matrix integrity through intermolecular polymer interaction. In addition, effervescent components played fundamental role in the formation of porous system as well as inducing burst release effect. Compartmental modeling provided different outlook about the drug release. Presence of IPC at a high proportion (10-15%) of the polymer blend modulated the changes of pattern of the drug release kinetics and mechanism. Finally, compartmental modeling-based approach was more adequate to describe the drug release kinetics and mechanism compared to the monophasic equation model correlating with process understanding of the drug release from swellable gastro-floating formulation.
Collapse
Affiliation(s)
- Syaiful Choiri
- Pharmaceutical Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Surakarta, Indonesia
| | | | - Abdul Rohman
- Department of Pharmaceutical Chemistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
10
|
Kuncahyo I, Choiri S, Fudholi A, Martien R, Rohman A. Assessment of Fractional Factorial Design for the Selection and Screening of Appropriate Components of a Self-nanoemulsifying Drug Delivery System Formulation. Adv Pharm Bull 2019; 9:609-618. [PMID: 31857965 PMCID: PMC6912180 DOI: 10.15171/apb.2019.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/25/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose: Recently, a self-nanoemulsifying drug delivery system (SNEDDS) has shown great improvement in the enhancement of drug bioavailability. The selection of appropriate compositions in the SNEDDS formulation is the fundamental step towards developing a successful formulation. This study sought to evaluate the effectiveness of fractional factorial design (FFD) in the selection and screening of a SNEDDS composition. Furthermore, the most efficient FFD approach would be applied to the selection of SNEDDS components. Methods: The types of oil, surfactant, co-surfactant, and their concentrations were selected as factors. 26 full factorial design (FD) (64 runs), 26-1 FFD (32 runs), 26-2 FFD (16 runs), and 26-3 FFD (8 runs) were compared to the main effect contributions of each design. Ca-pitavastatin (Ca-PVT) was used as a drug model. Screening parameters, such as transmittance, emulsification time, and drug load, were selected as responses followed by particle size along with zeta potential for optimized formulation. Results: The results indicated that the patterns of 26 full FD and 26-1 for both main effects and interactions were similar. 26-3 FFD lacked adequate precision when used for screening owing to the limitation of design points. In addition, capryol, Tween 80, and transcutol P were selected to be developed in a SNEDDS formulation with a particle size of 69.7± 5.3 nm along with a zeta potential of 33.4± 2.1 mV. Conclusion: Herein, 26-2 FFD was chosen as the most efficient and adequate design for the selection and screening of SNEDDS composition. The optimized formulation fulfilled the requirement of a quality target profile of a nanoemulsion.
Collapse
Affiliation(s)
- Ilham Kuncahyo
- Faculty of Pharmacy, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia 55281.,Department of Pharmaceutical Science, Setia Budi University, Mojosongo, Surakarta, Indonesia 57127
| | - Syaiful Choiri
- Pharmaceutical Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Surakarta, Indonesia 57126
| | - Achmad Fudholi
- Department of Pharmaceutics, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia 55281
| | - Ronny Martien
- Department of Pharmaceutics, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia 55281
| | - Abdul Rohman
- Department of Pharmaceutical Chemistry, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia 55281
| |
Collapse
|
11
|
Kuncahyo I, Choiri S, Fudholi A, Rohman A, Martien R. Understanding the effect of lipid formulation loading and ethanol as a diluent on solidification of pitavastatin super-saturable SNEDDS using factorial design approach. Res Pharm Sci 2019; 14:378-390. [PMID: 31798654 PMCID: PMC6827189 DOI: 10.4103/1735-5362.268198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Solidification of a preconcentrate lipid formulation namely self-nano emulsifying drug delivery system (SNEDDS) is required to achieve feasibility, flexibility, and a new concept of “dry nano-emulsion”. The purpose of this study was to assess the effect of SNEDDS loading and ethanol as a diluent on the solidification of pitavastatin supersaturable SNEDDS (S-SNEDDS). A 22 full factorial design approach with a center point addition as a curvature was implemented to determine the effect of S-SNEDDS loading and ethanol on the physical characteristics, namely flowability, compactibility, and drug release behavior. Vibrational spectra, thermal behavior, and morphology of solid S-SNEDDS formulation were also evaluated. The results indicated that there was no interaction between S-SNEDDS and carrier, based on vibrational spectra. However, thermal behaviors (enthalpy and weight loss) were depending on SNEDDS loading. Thereafter, the ethanol as a diluent of preconcentrated formulation had no effect on the morphology of carrier structure. However, the S-SNEDDS loading altered the structure of carrier owing to either solubilization or abrasion processes. The statistical model suggested that ethanol as diluent reduced the flowability, compactibility, and drug releases. Meanwhile, the liquid SNEDDS loading affected the reducing of flowability and compactibility. Finally, solidification without diluent and 20% lipid formulation load was recommended. In addition, it was very useful because of ease on handling, flexibility for further formulation, and desired characteristics of final solid dosage form.
Collapse
Affiliation(s)
- Ilham Kuncahyo
- Faculty of Pharmacy, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia.,Department of Pharmaceutical Science, Setia Budi University, Surakarta, Indonesia
| | - Syaiful Choiri
- Drug Delivery and Pharmaceutical Technology, Pharmaceutics Research Group, Department of Pharmacy, Universitas Sebelas Maret, Ir. Sutami 36A, Surakarta, Indonesia
| | - Achmad Fudholi
- Department of Pharmaceutics, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia
| | - Abdul Rohman
- Department of Pharmaceutical Chemistry, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia
| | - Ronny Martien
- Department of Pharmaceutics, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia
| |
Collapse
|
12
|
Sulaiman TNS, Larasati D, Nugroho AK, Choiri S. Assessment of the Effect of PLGA Co-polymers and PEG on the Formation and Characteristics of PLGA-PEG-PLGA Co-block Polymer Using Statistical Approach. Adv Pharm Bull 2019; 9:382-392. [PMID: 31592431 PMCID: PMC6773940 DOI: 10.15171/apb.2019.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/20/2019] [Accepted: 05/20/2019] [Indexed: 02/04/2023] Open
Abstract
Purpose: To assess the effect of the lactic acid (LA)-to-glycolic acid (GA) molar ratio and polyethylene glycol (PEG) concentration on the formation of poly-lactide co-glycolide acid (PLGA)-PEG-PLGA co-block polymers simultaneously using statistical approach. Methods: A 22 full factorial design with the addition of a point in the center of the design, namely curvature, was applied. Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR) were performed to confirm the formation of the co-block polymer. Simvastatin (SMV), a drug model was incorporated into the nano-polymeric micellar (NpM) of PLGA-PEG-PLGA followed by solubility phase, particle size, zeta potential, and entrapment efficiency characterizations. Results: FTIR, DSC, and NMR successfully confirmed the formation of co-block polymers. Solubility of SMV increased from 2 to 44-folds depending on co-block concentration with entrapment efficiency of 59%-80%. The NpM had size in the range of 206 to 402 nm with negative zeta potential. LA to GA ratio had greater effect on particle size reduction and increasing of co-polymer length. In addition, it had higher contributions on increasing of solubility and entrapment efficiency of SMV than PEG. Conclusion: According to these findings, the LA to GA ratio and PEG concentration gained a great consideration in order to prepare the PLGA-PEG-PLGA co-block which fulfilled the quality target product profile of NpM delivery system.
Collapse
Affiliation(s)
| | - Dwi Larasati
- Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia 55281
| | - Akhmad Kharis Nugroho
- Department of Pharmaceutics, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia 55281
| | - Syaiful Choiri
- Pharmaceutical Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Ir. Sutami 36A, Surakarta, Indonesia, 57126
| |
Collapse
|
13
|
Savic IM, Jocic E, Nikolic VD, Popsavin MM, Rakic SJ, Savic-Gajic IM. The effect of complexation with cyclodextrins on the antioxidant and antimicrobial activity of ellagic acid. Pharm Dev Technol 2018; 24:410-418. [PMID: 30035651 DOI: 10.1080/10837450.2018.1502318] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE The aim of the paper was to develop the simple procedures for preparation of inclusion complexes of ellagic acid (EA) with cyclodextrins (CDs) and to investigate their antioxidant and antimicrobial activity. METHODS The structural characterization was carried out using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) methods. The phase solubility technique was used to investigate the interactions between 'host' and 'guest' molecules and to estimate the molar ratio between them. The antioxidant and antimicrobial activity of EA and inclusion complexes were determined. RESULTS The apparent stability constants were found to be 117 dm3 mol-1 for the complex with β-CD and 161 dm3 mol-1 for the complex with (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD). The results of phase-solubility studies showed that EA formed the inclusion complexes with CDs in the molar ratio of 1:1. The calculated half-maximal inhibitory concentration was 41.18 μg cm-3 for butyl hydroxy toluene, 1.96 μg cm-3 for EA, 0.88 μg cm-3 for inclusion complex with HP-β-CD, and 1.27 μg cm-3 for inclusion complex with β-CD. CONCLUSION The stability constants indicated the rapid release of EA from the inclusion complexes in the aqueous medium at 25 °C. The antioxidant activity of EA was increased, while the antimicrobial activity was preserved after complexation with CDs.
Collapse
Affiliation(s)
- Ivan M Savic
- a Department of Organic Chemical Technology, Faculty of Technology , University of Nis , Leskovac , Serbia
| | - Emilija Jocic
- a Department of Organic Chemical Technology, Faculty of Technology , University of Nis , Leskovac , Serbia
| | - Vesna D Nikolic
- a Department of Organic Chemical Technology, Faculty of Technology , University of Nis , Leskovac , Serbia
| | - Mirjana M Popsavin
- b Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences , University of Novi Sad , Novi Sad , Serbia
| | - Srdjan J Rakic
- c Department of Physics, Faculty of Sciences , University of Novi Sad , Novi Sad , Serbia
| | - Ivana M Savic-Gajic
- a Department of Organic Chemical Technology, Faculty of Technology , University of Nis , Leskovac , Serbia
| |
Collapse
|
14
|
Ainurofiq A, Mauludin R, Mudhakir D, Soewandhi SN. Synthesis, characterization, and stability study of desloratadine multicomponent crystal formation. Res Pharm Sci 2018; 13:93-102. [PMID: 29606963 PMCID: PMC5842490 DOI: 10.4103/1735-5362.223775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
This study describes the formation of multicomponent crystal (MCC) of desloratadine (DES). The objective of this study was to discover the new pharmaceutical MCC of DES using several coformers. The MCC synthesis was performed between DES and 26 coformers using an equimolar ratio with a solvent evaporation technique. The selection of the appropriate solvent was carried out using 12 solvents. The preview of the MCC of DES was performed using polarized light microscopy (PLM). The formation of MCC was confirmed using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The accelerated stability of MCC at 40 °C and relative humidity of 75% was investigated using PXRD and FTIR. Depending on the prior evaluation, DES and benzoic acid (BA) formed the MCC. PLM and SEM results showed that crystal habit of combination between DES and BA differed from the constituent components. Moreover, the diffractogram pattern of DES-BA was distinct from the constituent components. The DSC thermogram showed a new peak which was distinct from both constituent components. The FTIR study proved a new spectrum. All characterizations indicated that a new solid crystal was formed, ensuring the MCC formation. In addition, DES-BA MCC had both chemical and physical stabilities for a period of 4 months.
Collapse
Affiliation(s)
- Ahmad Ainurofiq
- School of Pharmacy, Bandung Institute of Technology, Ganesha 10, Bandung, 40132, Indonesia.,Department of Pharmacy, Sebelas Maret University, Ir. Sutami 36A, Surakarta, 57126, Indonesia
| | - Rachmat Mauludin
- School of Pharmacy, Bandung Institute of Technology, Ganesha 10, Bandung, 40132, Indonesia
| | - Diky Mudhakir
- School of Pharmacy, Bandung Institute of Technology, Ganesha 10, Bandung, 40132, Indonesia
| | | |
Collapse
|