1
|
Liu M, Zhang G, Zhou K, Wen J, Zheng F, Sun L, Ren X. Structural characterization, antioxidant activity, and the effects of Codonopsis pilosula polysaccharides on the solubility and stability of flavonoids. J Pharm Biomed Anal 2023; 229:115368. [PMID: 37001273 DOI: 10.1016/j.jpba.2023.115368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
Codonopsis pilosula (CP) possesses properties related to nourishing the spleen and stomach, and tonifying Qi of the stomach and mind in traditional Chinese medicine (TCM). Codonopsis pilosula polysaccharides (CPPS), which are the primary active components of CP, are thought to be in charge of their extensive use. Rutin, quercetin, luteoloside, and luteolin, are common and pharmacologically significant flavonoids with many pharmacological activities, but their oral bioavailability is limited by poor solubility and stability. In this study, high-performance gel permeation chromatography (HPGPC) estimated the molecular weight of CPPS to be 9.7 × 105 Da. Sugar analysis revealed that CPPS is composed of D-mannose, D-glucose, and D-xylose with a molar ratio of 5.8:1.9:1.0. Moreover, the antioxidant test showed that CPPS had good antioxidant activity. It is worth noting that CPPS integrated the four flavonoids to form a spongy compound that significantly increased the solubilities and stabilities of flavonoids. The bonding constants of the CPPS and flavonoid-derived inclusion complexes ranged from 60 L mol-1 to 2,030,816 L mol-1, which demonstrated the capacity of CPPS to interact with flavonoids intermolecularly to form a drug complex system, resulting in potentially enhanced biopharmaceutical properties of flavonoids. This finding could provide a reference point for further applications of polysaccharides from herbal medicines.
Collapse
Affiliation(s)
- Meiqi Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guoqin Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kexin Zhou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinli Wen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fuxiang Zheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Yousef M, Le TS, Zuo J, Park C, Chacra NB, Davies NM, Löbenberg R. Sub-cellular sequestration of alkaline drugs in lysosomes: new insights for pharmaceutical development of lysosomal fluid. Res Pharm Sci 2022; 18:1-15. [PMID: 36846734 PMCID: PMC9951787 DOI: 10.4103/1735-5362.363591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/23/2022] [Accepted: 11/22/2022] [Indexed: 12/25/2022] Open
Abstract
Background and purpose Lysosomal-targeted drug delivery can open a new strategy for drug therapy. However, there is currently no universally accepted simulated or artificial lysosomal fluid utilized in the pharmaceutical industry or recognized by the United States Pharmacopeia (USP). Experimental procedure We prepared a simulated lysosomal fluid (SLYF) and compared its composition to a commercial artificial counterpart. The developed fluid was used to test the dissolution of a commercial product (Robitussin®) of a lysosomotropic drug (dextromethorphan) and to investigate in-vitro lysosomal trapping of two model drugs (dextromethorphan and (+/-) chloroquine). Findings/Results The laboratory-prepared fluid or SLYF contained the essential components for the lysosomal function in concentrations reflective of the physiological values, unlike the commercial product. Robitussin® passed the acceptance criteria for the dissolution of dextromethorphan in 0.1 N HCl medium (97.7% in less than 45 min) but not in the SLYF or the phosphate buffer media (72.6% and 32.2% within 45 min, respectively). Racemic chloroquine showed higher lysosomal trapping (51.9%) in the in-vitro model than dextromethorphan (28.3%) in a behavior supporting in-vivo findings and based on the molecular descriptors and the lysosomal sequestration potential of both. Conclusion and implication A standardized lysosomal fluid was reported and developed for in-vitro investigations of lysosomotropic drugs and formulations.
Collapse
Affiliation(s)
- Malaz Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada,Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Tyson S. Le
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jieyu Zuo
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, South Korea
| | - Nadia Bou Chacra
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Neal M. Davies
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada,Corresponding authors: N.M. Davies, Tel: +1-7802210828, Fax: +1-7804921217
R. Löbenberg, Tel: +1-7804921255, Fax: +1-7804921217
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada,Corresponding authors: N.M. Davies, Tel: +1-7802210828, Fax: +1-7804921217
R. Löbenberg, Tel: +1-7804921255, Fax: +1-7804921217
| |
Collapse
|
3
|
Thermodynamic Correlation between Liquid-Liquid Phase Separation and Crystalline Solubility of Drug-Like Molecules. Pharmaceutics 2022; 14:pharmaceutics14122560. [PMID: 36559054 PMCID: PMC9782016 DOI: 10.3390/pharmaceutics14122560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The purpose of the present study was to experimentally confirm the thermodynamic correlation between the intrinsic liquid−liquid phase separation (LLPS) concentration (S0LLPS) and crystalline solubility (S0c) of drug-like molecules. Based on the thermodynamic principles, the crystalline solubility LLPS concentration melting point (Tm) equation (CLME) was derived (log10S0C=log10S0LLPS−0.0095Tm−310 for 310 K). The S0LLPS values of 31 drugs were newly measured by simple bulk phase pH-shift or solvent-shift precipitation tests coupled with laser-assisted visual turbidity detection. To ensure the precipitant was not made crystalline at <10 s, the precipitation tests were also performed under the polarized light microscope. The calculated and observed log10S0C values showed a good correlation (root mean squared error: 0.40 log unit, absolute average error: 0.32 log unit).
Collapse
|
4
|
Xia X, Tao J, Ji Z, Long C, Hu Y, Zhao Z. Increased antitumor efficacy of ginsenoside Rh 2 via mixed micelles: in vivo and in vitro evaluation. Drug Deliv 2021; 27:1369-1377. [PMID: 32998576 PMCID: PMC7580790 DOI: 10.1080/10717544.2020.1825542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The aim of this work is to apply Solutol® HS15 and TPGS to prepare self-assembled micelles loading with ginsenoside Rh2 to increase the solubility of ginsenoside Rh2, hence, improving the antitumor efficacy. Ginsenoside Rh2-mixed micelles (Rh2-M) were prepared by thin film dispersion method. The optimal Rh2-M was characterized by particle size, morphology, and drug encapsulation efficiency. The enhancement of in vivo anti-tumor efficacy of Rh2-M was evaluated by nude mice bearing tumor model. The solubility of Rh2 in self-assembled micelles was increased approximately 150-folds compared to free Rh2. In vitro results demonstrated that the particle size of Rh2-M is 74.72 ± 2.63 nm(PDI = 0.147 ± 0.15), and the morphology of Rh2-M is spherical or spheroid, and the EE% and LE% are 95.27 ± 1.26% and 7.68 ± 1.34%, respectively. The results of in vitro cell uptake and in vivo imaging showed that Rh2-M could not only increase the cell uptake of drugs, but also transport drug to tumor sites, prolonging the retention time. In vitro cytotoxicity and in vivo antitumor results showed that the anti-tumor effect of Rh2 can be effectively improved by Rh2-M. Therefore, Solutol® HS15 and TPGS could be used to entrapping Rh2 into micelles, enhancing solubility and antitumor efficacy.
Collapse
Affiliation(s)
- Xiaojing Xia
- Department of Pharmaceutics, Zhejiang Pharmaceutical College, Ningbo, PR China
| | - Jin Tao
- Department of Pharmaceutics, Zhejiang Pharmaceutical College, Ningbo, PR China
| | - Zhuwa Ji
- Department of Pharmaceutics, Zhejiang Pharmaceutical College, Ningbo, PR China
| | - Chencheng Long
- Department of Pharmaceutics, Zhejiang Pharmaceutical College, Ningbo, PR China
| | - Ying Hu
- Department of Pharmaceutics, Zhejiang Pharmaceutical College, Ningbo, PR China
| | - Zhiying Zhao
- Department of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
5
|
Repin IA, Loebenberg R, DiBella J, Conceição ACL, Minas da Piedade ME, Ferraz HG, Issa MG, Bou-Chacra NA, Ermida CFM, de Araujo GLB. Exploratory Study on Lercanidipine Hydrochloride Polymorphism: pH-Dependent Solubility Behavior and Simulation of its Impact on Pharmacokinetics. AAPS PharmSciTech 2021; 22:54. [PMID: 33475891 DOI: 10.1208/s12249-021-01923-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/01/2021] [Indexed: 11/30/2022] Open
Abstract
This work describes an exploratory experimental and in silico study of the influence of polymorphism, particle size, and physiology on the pharmacokinetics of lercanidipine hydrochloride (LHC). Equilibrium and kinetic solubility studies were performed on LHC forms I and II, as a function of pH and buffer composition. GastroPlus® was used to evaluate the potential effect of solubility differences due to polymorphism, particle size, and physiological conditions, on the drug pharmacokinetics. The results indicated that solubilities of LHC polymorphs are strongly dependent on the composition and pH of the buffer media. The concentration ratio (CI/CII) is particularly large for chloride buffer (CI/CII = 3.3-3.9) and exhibits a slightly decreasing tendency with the pH increase for all other buffers. Based on solubility alone, a higher bioavailability of form I might be expected. However, exploratory PBPK simulations suggested that (i) under usual fasted (pH 1.3) and fed (pH 4.9) gastric conditions, the two polymorphs have similar bioavailability, regardless of the particle size; (ii) at high gastric pH in the fasted state (e.g., pH 3.0), the bioavailability of form II can be considerably lower than that of form I, unless the particle size is < 20 μm. This study demonstrates the importance of investigating the effect of the buffer nature when evaluating the solubility of ionizable polymorphic substances. It also showcases the benefits of using PBPK simulations, to assess the risk and pharmacokinetic relevance of different solubility and particle size between crystal forms, for diverse physiological conditions.
Collapse
|
6
|
Gliclazide: Biopharmaceutics Characteristics to Discuss the Biowaiver of Immediate and Extended Release Tablets. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The lists of essential medicines of the World Health Organization (WHO) and Brazil include gliclazide as an alternative to the oral antidiabetic drug of first choice, metformin, in the treatment of type 2 diabetes mellitus because of its pharmacokinetic profile and few side effects. Thus, it is also considered by WHO and the International Pharmaceutical Federation (FIP) as a drug candidate to biowaiver, which is the evaluation of how favorable the biopharmaceutics characteristics are in order to obtain waiver from the relative bioavailability/bioequivalence (RB/BE) studies to register new medicines. This paper presents a review about the solubility, permeability and dissolution of gliclazide. A critical analysis of the information allowed to identify gliclazide as a Biopharmaceutics Classification System (BCS) Class II drug. Therefore, new drugs in immediate release dosage forms will not be eligible for biowaiver. Regarding the extended release dosage forms, besides the limited solubility, no information on the comparative dissolution profile was found, which would be necessary to analyze a possible biowaiver for a smaller dosage. It can be concluded that the registration of new medicines containing gliclazide must undergo RB/BE studies, since there is not enough evidence to recommend the replacement and waiver of such studies for immediate and extended release formulations.
Collapse
|
7
|
Liu F, Sun L, You G, Liu H, Ren X, Wang M. Effects of Astragalus polysaccharide on the solubility and stability of 15 flavonoids. Int J Biol Macromol 2020; 143:873-880. [DOI: 10.1016/j.ijbiomac.2019.09.148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/06/2019] [Accepted: 09/22/2019] [Indexed: 02/02/2023]
|
8
|
Cao X, Li H, Wang M, Ren X, Deng Y. Analysis of five active ingredients of Er‐Zhi‐Wan, a traditional Chinese medicine water‐honeyed pill, using the biopharmaceutics classification system. Biomed Chromatogr 2019; 34:e4757. [DOI: 10.1002/bmc.4757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Xuexiao Cao
- School of Chinese Materia MedicaTianjin University of Traditional Chinese Medicine Tianjin China
| | - Huanhuan Li
- School of Chinese Materia MedicaTianjin University of Traditional Chinese Medicine Tianjin China
| | - Meng Wang
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin China
| | - Xiaoliang Ren
- School of Chinese Materia MedicaTianjin University of Traditional Chinese Medicine Tianjin China
| | - Yanru Deng
- School of Chinese Materia MedicaTianjin University of Traditional Chinese Medicine Tianjin China
| |
Collapse
|
9
|
de Castro LML, de Souza J, Caldeira TG, de Carvalho Mapa B, Soares AFM, Pegorelli BG, Della Croce CC, Barcellos NMS. The Evaluation of Valsartan Biopharmaceutics Properties. Curr Drug Res Rev 2019; 12:52-62. [PMID: 31820707 DOI: 10.2174/2589977511666191210151120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Solubility, intestinal permeability and dissolution are the main factors that govern the rate and extent of drugs absorption and are directly related to bioavailability. Biopharmaceutics Classification System (BCS) is an important tool which uses in vitro results for comparison with bioavailability in vivo (biowaiver). Valsartan is widely used in the treatment of hypertension and shows different BCS classification in the literature (BCS class II or III). OBJECTIVE This work proposes the study of valsartan biopharmaceutics properties and its BCS classification. METHODS High Performance Liquid Chromatography (HPLC) method was developed and validated to quantify the drug in buffers pH 1.2, 4.5 and 6.8 respectively. Valsartan solubility was determined in these three different media using shake flask method and intrinsic dissolution rate. Evaluation of dissolution profile from coated tablets was conducted. RESULTS The low solubility (pH 1.2 and 4.5) and high solubility (pH 6.8) were observed for both solubility methods. Permeability data reported from the literature showed that valsartan is a low permeability drug. Valsartan presented the rapid release profile only in pH 6.8. CONCLUSION We defined that valsartan is a class IV drug, in disagreement with what has been published so far. It is important to emphasize that the conditions considered here are indicated to define the biopharmaceutics classification by regulatory agencies.
Collapse
Affiliation(s)
- Lara Maria Lopes de Castro
- Quality Control Laboratory-Graduate Program in Pharmaceutical Sciences-CiPharma, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Jacqueline de Souza
- Quality Control Laboratory-Graduate Program in Pharmaceutical Sciences-CiPharma, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Tamires Guedes Caldeira
- Quality Control Laboratory-Graduate Program in Pharmaceutical Sciences-CiPharma, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Bruna de Carvalho Mapa
- Quality Control Laboratory-Graduate Program in Pharmaceutical Sciences-CiPharma, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Anna Flávia Matos Soares
- Quality Control Laboratory-Graduate Program in Pharmaceutical Sciences-CiPharma, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Bruna Gomes Pegorelli
- Quality Control Laboratory-Graduate Program in Pharmaceutical Sciences-CiPharma, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Carolina Carvalho Della Croce
- Quality Control Laboratory-Graduate Program in Pharmaceutical Sciences-CiPharma, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Neila Márcia Silva Barcellos
- Quality Control Laboratory-Graduate Program in Pharmaceutical Sciences-CiPharma, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
10
|
de Campos DP, Silva-Barcellos NM, Lima RR, Savedra RML, Siqueira MF, Yoshida MI, da Nova Mussel W, de Souza J. Polymorphic and Quantum Chemistry Characterization of Candesartan Cilexetil: Importance for the Correct Drug Classification According to Biopharmaceutics Classification System. AAPS PharmSciTech 2018; 19:3019-3028. [PMID: 30062540 DOI: 10.1208/s12249-018-1129-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/16/2018] [Indexed: 01/07/2023] Open
Abstract
The recommended method for the biopharmaceutical evaluation of drug solubility is the shake flask; however, there are discrepancies reported about the solubility of certain compounds measured with this method, one of them is candesartan cilexetil. The present work aimed to elucidate the solubility of candesartan cilexetil by associating others assays such as stability determination, polymorphic characterization and in silico calculations of intrinsic solubility, ionized species, and electronic structures using quantum chemistry descriptors (frontier molecular orbitals and Fukui functions). For the complete biopharmaceutical classification, we also reviewed the permeability data available. The polymorphic form used was previously identified as the form I of candesartan cilexetil. The solubility was evaluated in biorelevant media in the pH range of 1.2-6.8 at 37.0°C according to the stability previously assessed. The solubility of candesartan cilexetil is pH dependent and the dose/solubility ratios obtained demonstrated the low solubility of the prodrug. The in silico calculations supported the found results and evidenced the main groups involved in the solvation, benzimidazole, and tetrazol-biphenyl. The human absolute bioavailability reported demonstrates that candesartan cilexetil has low permeability and when associated with the low solubility allows to classify it as class 4 of the Biopharmaceutics Classification System.
Collapse
|