1
|
Kiricenko K, Meier R, Kleinebudde P. Systematic investigation of the impact of screw elements in continuous wet granulation. Int J Pharm X 2024; 8:100273. [PMID: 39206252 PMCID: PMC11357779 DOI: 10.1016/j.ijpx.2024.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Twin-screw wet granulation (TSG) is a continuous manufacturing technique either for granules as final dosage form or as an intermediate before tableting or capsule filling. A comprehensive process understanding is required to implement TSG, considering various parameters influencing granule and tablet quality. This study investigates the impact of screw configuration on granule properties followed by tableting, using a systematic approach for lactose-microcrystalline cellulose (lactose-MCC) and ibuprofen-mannitol (IBU) formulations. The most affecting factor, as observed by other researchers, was the L/S ratio impacting the granule size, strength and tabletability. Introducing tooth-mixing-elements at the end of the screw, as for the IBU formulation, resulted in a high proportion of oversized granules, with values between 36% and 78%. Increasing the thickness of kneading elements (KEs) produced denser, less friable granules with reduced tablet tensile strength. Granulation with more KEs, larger thickness or stagger angle increased torque values and residence time from 30 to 65 s. Generally, IBU granules exhibited high tabletability, requiring low compression pressure for sufficient tensile strength. At a compression pressure of 50 MPa, IBU tablets where at least one kneading zone was included resulted in approximately 2.5 MPa compared to lactose-MCC with 0.5 MPa. In conclusion, the TSG process demonstrated robustness by varying the screw design with minimal impact on subsequent tableting processes.
Collapse
Affiliation(s)
- Katharina Kiricenko
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Robin Meier
- L.B. Bohle Maschinen und Verfahren GmbH, 59320 Ennigerloh, Germany
| | - Peter Kleinebudde
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Kolipaka SS, Junqueira LA, Ross S, Garg V, Mithu MSH, Bhatt S, Douroumis D. An Advanced Twin-Screw Granulation Technology: The use of Non-Volatile Solvents with High Solubilizing Capacity. AAPS PharmSciTech 2024; 25:174. [PMID: 39085532 DOI: 10.1208/s12249-024-02890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024] Open
Abstract
PURPOSE Twin-screw wet granulation (TSWG) is a manufacturing process that offers several advantages for the processing of water-insoluble active pharmaceutical ingredients (APIs) and has been used for increasing the solubility and dissolution rates. Here we introduce a novel TSWG approach with reduced downstream processing steps by using non-volatile solvents as granulating binders. METHODS Herein, TSWG was carried out using Transcutol a non-volatile protic solvent as a granulating binder and dissolution enhancer of ibuprofen (IBU) blends with cellulose polymer grades (Pharmacoat® 603, Affinisol™, and AQOAT®). RESULTS The physicochemical characterisation of the produced granules showed excellent powder flow and the complete transformation of IBU into the amorphous state. Dissolution studies presented immediate release rates for all IBU formulations due to the high drug-polymer miscibility and the Transcutol solubilising capacity. CONCLUSIONS Overall, the study demonstrated an innovative approach for the development of extruded granules by processing water-insoluble APIs with non-volatile solvents for enhanced dissolution rates at high drug loadings.
Collapse
Affiliation(s)
| | | | - Steven Ross
- Custom Pharma Services, Conway St, Brighton and Hove, Hove, BN3 3LW, UK
| | - Vivek Garg
- Wolfson Centre for Bulk Solids Handling Technology, Faculty of Engineering & Science, University of Greenwich, Central Avenue, Chatham, ME4 4TB, UK
| | | | - Saumil Bhatt
- Cubi-Tech Extrusion Ltd., Unit 3, Neptune Close, Medway City Estate, Rochester, Kent, ME2 4LU, UK
| | - Dennis Douroumis
- Centre for Research Innovation (CRI), University of Greenwich, Chatham Maritime Kent, Chatham, ME4 4TB, UK.
- Delta Pharmaceutics Ltd., 1-3 Manor Road, Chatham, Kent, ME4 6AG, UK.
| |
Collapse
|
3
|
Denduyver P, Birk G, Ambruosi A, Vervaet C, Vanhoorne V. Evaluation of Polyvinyl Alcohol as Binder during Continuous Twin Screw Wet Granulation. Pharmaceutics 2024; 16:854. [PMID: 39065551 PMCID: PMC11280237 DOI: 10.3390/pharmaceutics16070854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Binder selection is a crucial step in continuous twin-screw wet granulation (TSWG), as the material experiences a much shorter residence time (2-40 s) in the granulator barrel compared to batch-wise granulation processes. Polyvinyl alcohol (PVA) 4-88 was identified as an effective binder during TSWG, but the potential of other PVA grades-differing in polymerization and hydrolysis degree-has not yet been studied. Therefore, the aim of the current study was to evaluate the potential of different PVA grades as a binder during TSWG. The breakage and drying behavior during the fluidized bed drying of drug-loaded granules containing the PVA grades was also studied. Three PVA grades (4-88, 18-88, and 40-88) were characterized and their attributes were compared to previously investigated binders by Vandevivere et al. through principal component analysis. Three binder clusters could be distinguished according to their attributes, whereby each cluster contained a PVA grade and a previously investigated binder. PVA 4-88 was the most effective binder of the PVA grades for both a good water-soluble and water-insoluble formulation. This could be attributed to its high total surface energy, low viscosity, good wettability of hydrophilic and hydrophobic surfaces, and good wettability by water of the binder. Compared to the previously investigated binders, all PVA grades were more effective in the water-insoluble formulation, as they yielded strong granules (friability below 30%) at lower L/S-ratios. This was linked to the high dispersive surface energy of the high-energy sites on the surface of PVA grades and their low surface tension. During fluidized bed drying, PVA grades proved suitable binders, as the acetaminophen (APAP) granules were dried within a short time due to the low L/S-ratio, at which high-quality granules could be produced. In addition, no attrition occurred, and strong tablets were obtained. Based on this study, PVA could be the preferred binder during twin screw granulation due to its high binder effectiveness at a low L/S-ratio, allowing efficient downstream processing. However, process robustness must be controlled by the included excipients, as PVA grades are operating in a narrow L/S-ratio range.
Collapse
Affiliation(s)
- Phaedra Denduyver
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (P.D.); (C.V.)
| | - Gudrun Birk
- Merck KGaA, Frankfuter Str. 250, 64293 Darmstadt, Germany; (G.B.); (A.A.)
| | | | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (P.D.); (C.V.)
| | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (P.D.); (C.V.)
| |
Collapse
|
4
|
Matsunami K, Meyer J, Rowland M, Dawson N, De Beer T, Van Hauwermeiren D. T-shaped partial least squares for high-dosed new active pharmaceutical ingredients in continuous twin-screw wet granulation: Granule size prediction with limited material information. Int J Pharm 2023; 646:123481. [PMID: 37805145 DOI: 10.1016/j.ijpharm.2023.123481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
This work presents a granule size prediction approach applicable to diverse formulations containing new active pharmaceutical ingredients (APIs) in continuous twin-screw wet granulation. The approach consists of a surrogate selection method to identify similar materials with new APIs and a T-shaped partial least squares (T-PLS) model for granule size prediction across varying formulations and process conditions. We devised a surrogate material selection method, employing a combination of linear pre-processing and nonlinear classification algorithms, which effectively identified suitable surrogates for new materials. Using only material properties obtained through four characterization methods, our approach demonstrated its predictive prowess. The selected surrogate methods were seamlessly integrated with our developed T-PLS model, which was meticulously validated for high-dose formulations involving three new APIs. When surrogating new APIs based on Gaussian process classification, we achieved the lowest prediction errors, signifying the method's robustness. The predicted d-values were within the range of uncertainty bounds for all cases, except for d90 of API C. Notably, the approach offers a direct and efficient solution for early-phase formulation and process development, considerably reducing the need for extensive experimental work. By relying on just four material characterization methods, it streamlines the research process while maintaining a high degree of accuracy.
Collapse
Affiliation(s)
- Kensaku Matsunami
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Oost-Vlaanderen, Belgium; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, Ghent, 9000, Oost-Vlaanderen, Belgium.
| | - Jonathan Meyer
- Worldwide Research and Development, Pfizer Inc., Sandwich, Kent, UK
| | - Martin Rowland
- Worldwide Research and Development, Pfizer Inc., Sandwich, Kent, UK
| | - Neil Dawson
- Worldwide Research and Development, Pfizer Inc., Sandwich, Kent, UK
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Oost-Vlaanderen, Belgium
| | - Daan Van Hauwermeiren
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Oost-Vlaanderen, Belgium; BIOMATH, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure links 653, Ghent, 9000, Oost-Vlaanderen, Belgium
| |
Collapse
|
5
|
Abdulhussain HA, Thompson MR. Considering Inelasticity in the Real-Time Monitoring of Particle Size for Twin-Screw Granulation via Acoustic Emissions. Int J Pharm 2023; 639:122949. [PMID: 37054925 DOI: 10.1016/j.ijpharm.2023.122949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 04/15/2023]
Abstract
A recently developed process analytical technology (PAT) using artificial intelligence to form the framework of its model, combining frequency-domain acoustic emissions (AE) and elastic impact mechanics to accurately predict complex particle size distributions (PSD) in real-time. This model was modified in this study to give more accurate predictions for the more highly cohesive granules typical of pharmaceutical solid oral dosage formulations. AE spectra were collected from the granulated impacts of various formulations with ranging characteristics from largely elastic to highly inelastic collision responses. A viscoelastic (Hertzian spring-dashpot) and elastoplastic (Walton-Braun) contact force model were compared to understand how these different micro-mechanical approaches would affect the prediction accuracy of particle sizes relevant to granulation. Retraining the artificial intelligence model with the Walton-Braun transformation and a more comprehensive dataset of AE spectra spanning a broad range of granulated formulations showed the prediction error drop to as low as 2% compared to the original elastic version showing errors as large as 18.6% with representative formulations of the industry. The improved PAT shows good applicability to monitoring bimodal PSD that are typical of continuous twin-screw granulation.
Collapse
Affiliation(s)
- H A Abdulhussain
- CAPPA-D/MMRI, Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - M R Thompson
- CAPPA-D/MMRI, Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
6
|
Vandevivere L, Denduyver P, Portier C, Häusler O, De Beer T, Vervaet C, Vanhoorne V. The Effect of Binder Types on the Breakage and Drying Behavior of Granules in a Semi-Continuous Fluid Bed Dryer after Twin Screw Wet Granulation. Int J Pharm 2022; 614:121449. [PMID: 34999149 DOI: 10.1016/j.ijpharm.2022.121449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/19/2021] [Accepted: 01/01/2022] [Indexed: 11/30/2022]
Abstract
Current study investigated the effect of different binder types on the granule drying process and the granule breakage behavior in a semi-continuous fluid bed dryer integrated in the C25 ConsiGma-system. The studied binders (i.e. hydroxypropyl pea starch, hydroxypropyl methylcellulose E15, polyvinylpyrrolidone K12, and starch octenyl succinate CO 01) required different liquid amounts to produce similar granule quality. These different liquid requirements were translated into different drying conditions for each binder to result in sufficiently dry granules at the end of a drying cycle. By comparing the size distribution of the granules before entering and after exiting the fluid bed dryer, granule breakage could be evaluated. No effect of the binder type on the granule breakage during drying was observed. However, differences in granule breakage were observed for the binders when processed with the horizontal set-up of the C25 system, as granule breakage during pneumatic transport depended on the binder type. Only one binder (hydroxypropyl pea starch) allowed to avoid granule breakage during the entire process. Furthermore, this research showed that the drying process was mainly steered by the liquid requirements for granulation, and that these liquid requirements depended on the binder used.
Collapse
Affiliation(s)
- L Vandevivere
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - P Denduyver
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - C Portier
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - O Häusler
- Roquette Frères, Rue de la Haute Loge, 62136 Lestrem, France
| | - T De Beer
- Ghent University, Laboratory of Pharmaceutical Process Analytical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - C Vervaet
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - V Vanhoorne
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
7
|
Rao RR, Pandey A, Hegde AR, Kulkarni VI, Chincholi C, Rao V, Bhushan I, Mutalik S. Metamorphosis of Twin Screw Extruder-Based Granulation Technology: Applications Focusing on Its Impact on Conventional Granulation Technology. AAPS PharmSciTech 2021; 23:24. [PMID: 34907508 PMCID: PMC8816530 DOI: 10.1208/s12249-021-02173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/29/2021] [Indexed: 11/30/2022] Open
Abstract
In order to be at pace with the market requirements of solid dosage forms and regulatory standards, a transformation towards systematic processing using continuous manufacturing (CM) and automated model-based control is being thought through for its fundamental advantages over conventional batch manufacturing. CM eliminates the key gaps through the integration of various processes while preserving quality attributes via the use of process analytical technology (PAT). The twin screw extruder (TSE) is one such equipment adopted by the pharmaceutical industry as a substitute for the traditional batch granulation process. Various types of granulation techniques using twin screw extrusion technology have been explored in the article. Furthermore, individual components of a TSE and their conjugation with PAT tools and the advancements and applications in the field of nutraceuticals and nanotechnology have also been discussed. Thus, the future of granulation lies on the shoulders of continuous TSE, where it can be coupled with computational mathematical studies to mitigate its complications.
Collapse
|
8
|
Abdulhussain H, Thompson M. Predicting the particle size distribution in twin screw granulation through acoustic emissions. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.08.089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Mady OY, Al-Shoubki AA, Donia AA. An Industrial Procedure for Pharmacodynamic Improvement of Metformin HCl via Granulation with Its Paracellular Pathway Enhancer Using Factorial Experimental Design. Drug Des Devel Ther 2021; 15:4469-4487. [PMID: 34764634 PMCID: PMC8576103 DOI: 10.2147/dddt.s328262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/23/2021] [Indexed: 01/02/2023] Open
Abstract
Background Sorbitan monostearate is a surfactant used in the food industry. It was proved as a penetration enhancer to metformin HCl via a paracellular pathway. It is solid at room temperature and has a low melting point. Therefore, it was selected, as a granulating agent for metformin HCl. Methods Multi-level factorial design was applied to determine the optimized formula for industrial processing. The selected formulations were scanned using an electron microscope. Differential scanning calorimetry was used to ascertain the crystalline state of a drug. A modified non-everted sac technique, suggested by the authors, was used to evaluate the in vitro permeation enhancement of the drug. To simulate the emulsification effect of the bile salt, a tween 80 was added to the perfusion solution. As a pharmacodynamic marker, blood glucose levels were measured in diabetic rats. Results The results showed that drug permeability increases in the presence of tween 80. Drug permeability from granules increased than that of the pure drug or pure drug with tween 80. The prepared granules decreased blood glucose levels of diabetic rats than the pure drug and drug plus tween 80. There was an excellent correlation between the results of the drug permeation percent in vitro and the dropping of blood glucose level percent in vivo. Conclusion Improving the drug permeation and consequently, the drug pharmacodynamic effect in addition to an excellent micromeritics property of the prepared drug granules showed the dual enhancement effect of the suggested industrial procedure. Therefore, we suggest the same industrial procedure for other class III drugs.
Collapse
Affiliation(s)
- Omar Y Mady
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Adam A Al-Shoubki
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Omar Al-Mukhtar University, Al-Bayda, Libya
| | - Ahmed A Donia
- Department of Pharmaceutical Technology, Menoufia University, Shebeen El-Kom, Egypt
| |
Collapse
|
10
|
Domokos A, Pusztai É, Madarász L, Nagy B, Gyürkés M, Farkas A, Fülöp G, Casian T, Szilágyi B, Nagy ZK. Combination of PAT and mechanistic modeling tools in a fully continuous powder to granule line: Rapid and deep process understanding. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.04.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Portier C, Vervaet C, Vanhoorne V. Continuous Twin Screw Granulation: A Review of Recent Progress and Opportunities in Formulation and Equipment Design. Pharmaceutics 2021; 13:668. [PMID: 34066921 PMCID: PMC8148523 DOI: 10.3390/pharmaceutics13050668] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/16/2022] Open
Abstract
Continuous twin screw wet granulation is one of the key continuous manufacturing technologies that have gained significant interest in the pharmaceutical industry as well as in academia over the last ten years. Given its considerable advantages compared to wet granulation techniques operated in batch mode such as high shear granulation and fluid bed granulation, several equipment manufacturers have designed their own manufacturing setup. This has led to a steep increase in the research output in this field. However, most studies still focused on a single (often placebo) formulation, hence making it difficult to assess the general validity of the obtained results. Therefore, current review provides an overview of recent progress in the field of continuous twin screw wet granulation, with special focus on the importance of the formulation aspect and raw material properties. It gives practical guidance for novel and more experienced users of this technique and highlights some of the unmet needs that require further research.
Collapse
Affiliation(s)
| | | | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; (C.P.); (C.V.)
| |
Collapse
|
12
|
Portier C, Vigh T, Di Pretoro G, Leys J, Klingeleers D, De Beer T, Vervaet C, Vanhoorne V. Continuous twin screw granulation: Impact of microcrystalline cellulose batch-to-batch variability during granulation and drying - A QbD approach. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2021; 3:100077. [PMID: 33870182 PMCID: PMC8044642 DOI: 10.1016/j.ijpx.2021.100077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022]
Abstract
Despite significant advances in the research domain of continuous twin screw granulation, limited information is currently available on the impact of raw material properties, especially considering batch-to-batch variability. The importance of raw material variability and subsequent mitigation of the impact of this variability on the manufacturing process and drug product was recently stressed in the Draft Guidance for Industry on Quality Considerations for Continuous Manufacturing by the U.S. Food and Drug Administration (FDA). Therefore, this study assessed the impact of microcrystalline cellulose (MCC) batch-to-batch variability and process settings in a continuous twin screw wet granulation and semi-continuous drying line. Based on extensive raw material characterization and subsequent principal component analysis, raw material variability was quantitatively introduced in the design of experiments approach by means of t1 and t2 scores. L/S ratio had a larger effect on critical granule attributes and processability than screw speed and drying time. A large impact of the t1 and t2 scores was found, indicating the importance of raw material attributes. For the studied formulation, it was concluded that MCC batches with a low water binding capacity, low moisture content and high bulk density generated granules with the most desirable quality attributes. Additionally, an innovative and quantitative approach towards mitigating batch-to-batch variability of raw materials was proposed, which is also applicable for additional excipients and APIs.
Collapse
Key Words
- API, Active Pharmaceutical Ingredient
- BET, Brunauer Emmett and Teller
- Batch-to-batch variability
- Com, Commercial batch
- Continuous manufacturing
- Design of experiments
- DoE, Design of Experiments
- Dx (d10, d50, d90), Size in microns at which x volume% of the particles is smaller than dx
- Formulation development
- HR, Hausner Ratio
- L/D, Length-to-diameter
- L/S, Liquid to solid
- LOD, Loss on drying
- MCC, Microcrystalline Cellulose
- PCA, Principle Component Analysis
- PSD, Particle size distribution
- QbD, Quality-by-Design
- Quality-by-Design
- RTD, Residence Time Distribution
- SCE, Size Control Element
- SSA, Specific Surface Area
- Twin screw granulation
- WBC, Water Binding Capacity
- Wet granulation
- rpm, Revolutions Per Minute
Collapse
Affiliation(s)
- Christoph Portier
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Tamas Vigh
- Drug Product Development, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Giustino Di Pretoro
- Drug Product Development, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Jan Leys
- Drug Product Development, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Didier Klingeleers
- Drug Product Development, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
13
|
Fülöp G, Domokos A, Galata D, Szabó E, Gyürkés M, Szabó B, Farkas A, Madarász L, Démuth B, Lendér T, Nagy T, Kovács-Kiss D, Van der Gucht F, Marosi G, Nagy ZK. Integrated twin-screw wet granulation, continuous vibrational fluid drying and milling: A fully continuous powder to granule line. Int J Pharm 2020; 594:120126. [PMID: 33321167 DOI: 10.1016/j.ijpharm.2020.120126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Abstract
Highly homogeneous low-dose (50 μg) tablets were produced incorporating perfectly free-flowing granules prepared by a fully integrated Continuous Manufacturing (CM) line. The adopted CM equipment consisted of a Twin-Screw Wet Granulator (TSWG), a Continuous Fluid Bed Dryer (CFBD) and a Continuous Sieving (CS) unit. Throughout the experiments a pre-blend of lactose-monohydrate and corn starch was gravimetrically dosed with 1 kg/h into the TSWG, where they were successfully granulated with the drug containing water-based PVPK30 solution. The wet mass was subsequently dried in the CFBD on a vibratory conveyor belt and finally sieved in the milling unit. Granule production efficiency was maximized by determining the minimal Liquid-to-Solid (L/S) ratio (0.11). Design of Experiments (DoE) were carried out in order to evaluate the influence of the drying process parameters of the CFBD on the Loss-on-Drying (LOD) results. The manufactured granules were compressed into tablets by an industrial tablet rotary press with excellent API homogeneity (RSD < 3%). Significant scale-up was realized with the CM line by increasing the throughput rate to 10 kg/h. The manufactured granules yielded very similar results to the previous small-scale granulation runs. API homogeneity was demonstrated (RSD < 2%) with Blend Uniformity Analysis (BUA). The efficiency of TSWG granulation was compared to High-Shear Granulation (HSG) with the same L/S ratio. The final results have demonstrated that both the liquid distribution and more importantly API homogeneity was better in case of the TSWG granulation (RSD 1.3% vs. 4.5%).
Collapse
Affiliation(s)
- G Fülöp
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary; Gedeon Richter Plc., Formulation R&D, Gyömrői u. 19-21, H-1103 Budapest, Hungary
| | - A Domokos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - D Galata
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - E Szabó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - M Gyürkés
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - B Szabó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - A Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - L Madarász
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - B Démuth
- Gedeon Richter Plc., Formulation R&D, Gyömrői u. 19-21, H-1103 Budapest, Hungary
| | - T Lendér
- Gedeon Richter Plc., Formulation R&D, Gyömrői u. 19-21, H-1103 Budapest, Hungary
| | - T Nagy
- Gedeon Richter Plc., Formulation R&D, Gyömrői u. 19-21, H-1103 Budapest, Hungary
| | - D Kovács-Kiss
- Gedeon Richter Plc., Formulation R&D, Gyömrői u. 19-21, H-1103 Budapest, Hungary
| | - F Van der Gucht
- ProCepT N.V., Industriepark Rosteyne 4, 9060 Zelzate, Belgium
| | - G Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Z K Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rkp. 3, 1111 Budapest, Hungary.
| |
Collapse
|
14
|
Portier C, Vigh T, Di Pretoro G, De Beer T, Vervaet C, Vanhoorne V. Continuous twin screw granulation: Impact of binder addition method and surfactants on granulation of a high-dosed, poorly soluble API. Int J Pharm 2020; 577:119068. [DOI: 10.1016/j.ijpharm.2020.119068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 10/25/2022]
|
15
|
Vandevivere L, Portier C, Vanhoorne V, Häusler O, Simon D, De Beer T, Vervaet C. Native starch as in situ binder for continuous twin screw wet granulation. Int J Pharm 2019; 571:118760. [PMID: 31622742 DOI: 10.1016/j.ijpharm.2019.118760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022]
Abstract
The use of native starch as in situ binder in a continuous twin screw wet granulation process was studied. Gelatinization of pea starch occurred in the barrel of the granulator using a poorly soluble excipient (anhydrous dicalcium phosphate), but the degree of gelatinization depended on the liquid-to-solid ratio, the granule heating and the screw configuration. Furthermore, the degree of starch gelatinization was correlated with the granule quality: higher binder efficiency was observed in runs where starch was more gelatinized. SEM and PLOM images showed experimental runs which resulted in completely gelatinized starch. Other starch types (maize, potato and wheat starch) could also be gelatinized when processed above a critical barrel temperature for gelatinization. This barrel temperature was different for all starches. In situ starch gelatinization was also investigated in combination with a highly soluble excipient (mannitol). The lower granule friability observed using pure mannitol compared to a mannitol/starch mixture indicated that starch did not contribute to the binding, hence starch did not gelatinize during processing. The study showed that native starch can be considered as a promising in situ binder for continuous twin screw wet granulation of a poorly soluble formulation.
Collapse
Affiliation(s)
- Lise Vandevivere
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Gent, Belgium.
| | - Christoph Portier
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Gent, Belgium.
| | - Valérie Vanhoorne
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Gent, Belgium.
| | - Olaf Häusler
- Roquette Frères, Rue de la Haute Loge, 62136 Lestrem, France.
| | - Denis Simon
- Roquette Frères, Rue de la Haute Loge, 62136 Lestrem, France.
| | - Thomas De Beer
- Ghent University, Laboratory of Pharmaceutical Process Analytical Technology, Ottergemsesesteenweg 460, 9000 Ghent, Belgium.
| | - Chris Vervaet
- Ghent University, Laboratory of Pharmaceutical Technology, Ottergemsesteenweg 460, 9000 Gent, Belgium.
| |
Collapse
|