1
|
Lin C, Wang J, Ma Y, Han W, Cao Y, Shao M, Cui S. Effect of a 630 nm light on vasculogenic mimicry in A549 lung adenocarcinoma cells in vitro. Photodiagnosis Photodyn Ther 2023; 44:103831. [PMID: 37806608 DOI: 10.1016/j.pdpdt.2023.103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE The objective of this study was to investigate the effect of photodynamic therapy (PDT) on the formation of vasculogenic mimicry (VM) in the human lung adenocarcinoma A549 cell line in vitro. METHODS The participants were divided into a blank control group, a photosensitizer group, a light group, and a PDT group. Cells from each group were cultured in three dimensions using Matrigel, and vasculogenic mimicry generation was observed microscopically. Periodic Acid-Schiff (PAS) staining was used to verify the vasculogenic mimicry structure. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) was used to detect the expression levels of cellular osteopontin (OPN) and vascular endothelial growth factor (VEGF) mRNA. Western blotting was used to detect the expression levels of cellular OPN and VEGF protein. RESULTS A549 cells cultured on Matrigel for about six hours revealed VM on PAS staining, and the number of formations was significantly reduced in the PDT group compared with other groups (P < 0.05). The RT-PCR results showed that the PDT group downregulated OPN and VEGF mRNA expression compared with each control group (P < 0.05). Western blot results showed that OPN and VEGF protein expression was downregulated in the PDT group compared with each control group (P < 0.05). The results of RT-PCR showed that the expression of OPN and VEGF mRNA was downregulated in the PDT group compared with each control group (P < 0.05). The results of Western blotting showed that the expression of OPN and VEGF was downregulated in the protein PDT group compared with each control group (P < 0.001). CONCLUSION Photodynamic therapy significantly inhibited the formation of vasculogenic mimicry in human lung adenocarcinoma A549 cells in vitro and downregulated the expression of OPN, VEGF mRNA, and protein levels.
Collapse
Affiliation(s)
- Cunzhi Lin
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jingyu Wang
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yijiang Ma
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Weizhong Han
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yiwei Cao
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Mingju Shao
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shichao Cui
- Department of Respiratory & Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
2
|
Fan M, Huang Y, Zhu X, Zheng J, Du M. Octreotide and Octreotide-derived delivery systems. J Drug Target 2023; 31:569-584. [PMID: 37211679 DOI: 10.1080/1061186x.2023.2216895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 04/29/2023] [Indexed: 05/23/2023]
Abstract
Pharmaceutical peptide Octreotide is a somatostatin analog with targeting and therapeutic abilities. Over the last decades, Octreotide has been developed and approved to treat acromegaly and neuroendocrine tumours, and Octreotide-based radioactive conjugates have been leveraged clinically to detect small neuroendocrine tumour sites. Meanwhile, variety of Octreotide-derived delivery strategies have been proposed and explored for tumour targeted therapeutics or diagnostics in preclinical or clinical settings. In this review, we especially focus on the preclinical development and applications of Octreotide-derived drug delivery systems, diagnostic nanosystems, therapeutic nanosystems and multifunctional nanosystems, we also briefly discuss challenges and prospects of these Octreotide-derived delivery systems.
Collapse
Affiliation(s)
- Mingliang Fan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinlin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiayu Zheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mingwei Du
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
3
|
Dytrych P, Kejík Z, Hajduch J, Kaplánek R, Veselá K, Kučnirová K, Skaličková M, Venhauerová A, Hoskovec D, Martásek P, Jakubek M. Therapeutic potential and limitations of curcumin as antimetastatic agent. Biomed Pharmacother 2023; 163:114758. [PMID: 37141738 DOI: 10.1016/j.biopha.2023.114758] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
Treatment of metastatic cancer is one of the biggest challenges in anticancer therapy. Curcumin is interesting nature polyphenolic compound with unique biological and medicinal effects, including repression of metastases. High impact studies imply that curcumin can modulate the immune system, independently target various metastatic signalling pathways, and repress migration and invasiveness of cancer cells. This review discusses the potential of curcumin as an antimetastatic agent and describes potential mechanisms of its antimetastatic activity. In addition, possible strategies (curcumin formulation, optimization of the method of administration and modification of its structure motif) to overcome its limitation such as low solubility and bioactivity are also presented. These strategies are discussed in the context of clinical trials and relevant biological studies.
Collapse
Affiliation(s)
- Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| |
Collapse
|
4
|
Tang H, Zhang Z, Zhu M, Xie Y, Lv Z, Liu R, Shen Y, Pei J. Efficient Delivery of Gemcitabine by Estrogen Receptor-Targeted PEGylated Liposome and Its Anti-Lung Cancer Activity In Vivo and In Vitro. Pharmaceutics 2023; 15:pharmaceutics15030988. [PMID: 36986849 PMCID: PMC10059217 DOI: 10.3390/pharmaceutics15030988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Lung cancer is one of the main causes of cancer-related deaths. At present, the main treatment method for lung cancer is chemotherapy. Gemcitabine (GEM) is widely applied in lung cancer treatment, but its lack of targeting ability and serious side effects limit its application. In recent years, nanocarriers have become the focus of research to solve the above problems. Here, we prepared estrone (ES)-modified GEM-loaded PEGylated liposomes (ES-SSL-GEM) for enhanced delivery by identifying the overexpressed estrogen receptor (ER) on lung cancer A549 cells. We studied the characterization, stability, release behavior, cytotoxicity, targeting ability, endocytosis mechanism, and antitumor ability to prove the therapeutic effect of ES-SSL-GEM. The results showed that ES-SSL-GEM presented a uniform particle size of 131.20 ± 0.62 nm, a good stability, and a slowly released behavior. Moreover, ES-SSL-GEM enhanced tumor-targeting ability, and the endocytosis mechanism studies confirmed that the ER-mediated endocytosis had the most crucial effect. Furthermore, ES-SSL-GEM had the best inhibitory effect on A549 cell proliferation and significantly suppressed the tumor growth in vivo. These results suggest that ES-SSL-GEM is a promising agent for treating lung cancer.
Collapse
Affiliation(s)
- Huan Tang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zheng Zhang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Ming Zhu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yizhuo Xie
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhe Lv
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Rui Liu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yujia Shen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jin Pei
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
5
|
Maleki Dizaj S, Alipour M, Dalir Abdolahinia E, Ahmadian E, Eftekhari A, Forouhandeh H, Rahbar Saadat Y, Sharifi S, Zununi Vahed S. Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytother Res 2022; 36:1156-1181. [PMID: 35129230 DOI: 10.1002/ptr.7389] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022]
Abstract
Curcumin is a phytochemical achieved from the plant turmeric. It is extensively utilized for the treatment of several types of diseases such as cancers. Nevertheless, its efficiency has been limited because of rapid metabolism, low bioavailability, poor water solubility, and systemic elimination. Scientists have tried to solve these problems by exploring novel drug delivery systems such as lipid-based nanoparticles (NPs) (e.g., solid lipid NPs, nanostructured lipid carriers, and liposomes), polymeric NPs, micelles, nanogels, cyclodextrin, gold, and mesoporous silica NPs. Among these, liposomes have been the most expansively studied. This review mainly focuses on the different curcumin nanoformulations and their use in cancer therapy in vitro, in vivo, and clinical studies. Despite the development of curcumin-containing NPs for the treatment of cancer, potentially serious side effects, including interactions with other drugs, some toxicity aspects of NPs may occur that require more high-quality investigations to firmly establish the clinical efficacy.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Health innovation and acceleration center, Tabriz University of Medical Sciences, Tabriz, Iran.,Russian Institute for Advanced Study, Moscow State Pedagogical University, Moscow, Russian Federation
| | - Haleh Forouhandeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
6
|
Ma L, Jin G, Yao K, Yang Y, Chang R, Wang W, Liu J, Zhu Z. Safety and Efficacy of Anti-PD-1/PD-L1 Inhibitors Compared With Docetaxel for NSCLC: A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:699892. [PMID: 34456725 PMCID: PMC8397376 DOI: 10.3389/fphar.2021.699892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/02/2021] [Indexed: 12/25/2022] Open
Abstract
Objective: To evaluate the efficacy and safety of anti-PD-1/PD-L1 Inhibitors versus docetaxel for non-small cell lung cancer by meta-analysis. Methods: Randomized controlled trials (RCTs) about anti-PD-1/PD-L1 Inhibitors versus docetaxel on the treatment of NSCLC were searched in CNKI, WF, VIP, PubMed, EMBASE, Cochrane Library, and Web of Science databases. Two reviewers independently screened literature, extracted data and evaluated the risk of bias of eligible studies. Meta-analysis was performed by RevMan5.3 software. Results: Compared with the use of docetaxel chemotherapy for NSCLC, the overall survival and progression-free survival of the anti-PD-1/PD-L1 Inhibitors regimen are better [overall survival: (HR= 0.73, 95%CI:0.69∼0.77, P<0.00001], progression-free survival: (HR= 0.89, 95%CI:0.83∼0.94, P<0.00001]), and lower incidence of treatment-related grade 3 or higher adverse events ([OR=0.20, 95% CI: 0.13∼0.31, P<0.00001]). Conclusion: Compared with the docetaxel chemotherapy regimen, the anti-PD-1/PD-L1 Inhibitors has certain advantages in terms of efficacy and safety. The results still need to be confirmed by a multi-center, large sample, and high-quality research.
Collapse
Affiliation(s)
- Long Ma
- The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China.,Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Gang Jin
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Keying Yao
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yi Yang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Ruitong Chang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Wenhao Wang
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Jiawei Liu
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Zijiang Zhu
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
7
|
Ozkan E, Bakar-Ates F. Ferroptosis: A Trusted Ally in Combating Drug Resistance in Cancer. Curr Med Chem 2021; 29:41-55. [PMID: 34375173 DOI: 10.2174/0929867328666210810115812] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022]
Abstract
Ferroptosis, which is an iron-dependent, non-apoptotic cell death mechanism, has recently been proposed as a novel approach in cancer treatment. Bearing distinctive features and its exclusive mechanism have put forward the potential therapeutic benefit of triggering this newly discovered form of cell death. Numerous studies have indicated that apoptotic pathways are often deactivated in resistant cells, leading to a failure in therapy. Hence, alternative strategies to promote cell death are required. Mounting evidence suggests that drug-resistant cancer cells are particularly sensitive to ferroptosis. Given that cancer cells consume a higher amount of iron than healthy ones, ferroptosis not only stands as an excellent alternative to trigger cell death and reverse drug-resistance, but also provides selectivity in therapy. This review focuses specifically on overcoming drug-resistance in cancer through activating ferroptotic pathways and brings together the relevant chemotherapeutics-based and nanotherapeutics-based studies to offer a perspective for researchers regarding the potential use of this mechanism in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Erva Ozkan
- Ankara University, Faculty of Pharmacy, Department of Biochemistry, Ankara, Turkey
| | - Filiz Bakar-Ates
- Ankara University, Faculty of Pharmacy, Department of Biochemistry, Ankara, Turkey
| |
Collapse
|
8
|
A. Razak SA, Mohd Gazzali A, Fisol FA, M. Abdulbaqi I, Parumasivam T, Mohtar N, A. Wahab H. Advances in Nanocarriers for Effective Delivery of Docetaxel in the Treatment of Lung Cancer: An Overview. Cancers (Basel) 2021; 13:400. [PMID: 33499040 PMCID: PMC7865793 DOI: 10.3390/cancers13030400] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Docetaxel (DCX) is a highly effective chemotherapeutic drug used in the treatment of different types of cancer, including non-small cell lung cancer (NSCLC). The drug is known to have low oral bioavailability due to its low aqueous solubility, poor membrane permeability and susceptibility to hepatic first-pass metabolism. To mitigate these problems, DCX is administered via the intravenous route. Currently, DCX is commercially available as a single vial that contains polysorbate 80 and ethanol to solubilize the poorly soluble drug. However, this formulation causes short- and long-term side effects, including hypersensitivity, febrile neutropenia, fatigue, fluid retention, and peripheral neuropathy. DCX is also a substrate to the drug efflux pump P-glycoprotein (P-gp) that would reduce its concentration within the vicinity of the cells and lead to the development of drug resistance. Hence, the incorporation of DCX into various nanocarrier systems has garnered a significant amount of attention in recent years to overcome these drawbacks. The surfaces of these drug-delivery systems indeed can be functionalized by modification with different ligands for smart targeting towards cancerous cells. This article provides an overview of the latest nanotechnological approaches and the delivery systems that were developed for passive and active delivery of DCX via different routes of administration for the treatment of lung cancer.
Collapse
Affiliation(s)
- S. Aishah A. Razak
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Faisalina Ahmad Fisol
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), National Institute of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation (MOSTI), Gelugor, Penang 11700, Malaysia
| | - Ibrahim M. Abdulbaqi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| |
Collapse
|
9
|
Aerosolized Niosome Formulation Containing Gemcitabine and Cisplatin for Lung Cancer Treatment: Optimization, Characterization and In Vitro Evaluation. Pharmaceutics 2021; 13:pharmaceutics13010059. [PMID: 33466428 PMCID: PMC7824823 DOI: 10.3390/pharmaceutics13010059] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Gemcitabine (Gem) and cisplatin (Cis) are currently being used for lung cancer treatment, but they are highly toxic in high dosages. This research aimed to develop a niosome formulation containing a low-dosage Gem and Cis (NGC), as an alternative formulation for lung cancer treatment. NGC was prepared using a very simple heating method and was further optimized by D-optimal mixture design. The optimum NGC formulation with particle size, polydispersity index (PDI), and zeta potential of 166.45 nm, 0.16, and −15.28 mV, respectively, was obtained and remained stable at 27 °C with no phase separation for up to 90 days. The aerosol output was 96.22%, which indicates its suitability as aerosolized formulation. An in vitro drug release study using the dialysis bag diffusion technique showed controlled release for both drugs up to 24 h penetration. A cytotoxicity study against normal lung (MRC5) and lung cancer (A549) cell lines was investigated. The results showed that the optimized NGC had reduced cytotoxicity effects against both MRC5 and A549 when compared with the control (Gem + Cis alone) from very toxic (IC50 < 1.56 µg/mL) to weakly toxic (IC50 280.00 µg/mL) and moderately toxic (IC50 = 46.00 µg/mL), respectively, after 72 h of treatment. These findings revealed that the optimized NGC has excellent potential and is a promising prospect in aerosolized delivery systems to treat lung cancer that warrants further investigation.
Collapse
|
10
|
Tiwari A, Jain SK. Curcumin Based Drug Delivery Systems for Cancer Therapy. Curr Pharm Des 2020; 26:5430-5440. [DOI: 10.2174/1381612826666200429095503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 01/04/2023]
Abstract
Cancer accounts for the second major cause of death globally. Conventional cancer therapies lead to
systemic toxicity that forbids their long term application. Besides, tumor resistance and recurrence have been
observed in the majority of cases. Thus, the development of such therapy, which will pose minimum side effects,
is the need of the hour. Curcumin or diferuloylmethane (CUR) is a natural polyphenol bioactive (obtained from
Curcuma longa) which possesses anti-cancer and chemo-preventive activity. It acts by modulating various components
of signaling cascades that are involved in cancer cell proliferation, invasion, and apoptosis process. It
interacts with the adaptive and innate immune systems of our body and causes tumor regression. This may be the
reason behind the attainment of in vivo anti-tumor activity at a very low concentration. Its ease of availability,
safety profile, low cost, and multifaceted role in cancer prevention and treatment has made it a promising agent
for chemoprevention of many cancers. Regardless of the phenomenal properties, its clinical utility is haltered due
to its low aqueous solubility, poor bioavailability, rapid metabolism, and low cellular uptake. In the last few
years, a variety of novel drug carriers have been fabricated to enhance the bioavailability and pharmacokinetic
profile of CUR to attain better targeting of cancer. In this review, the recent developments in the arena of nanoformulations,
like liposomes, polymeric NPs, solid lipid NPs (SNPs), polymeric micelles, nanoemulsions, microspheres,
nanogels, etc. in anticancer therapy have been discussed along with a brief overview of the molecular
targets for CUR in cancer therapy and role of CUR in cancer immunotherapy.
Collapse
Affiliation(s)
- Ankita Tiwari
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), 470 003, India
| | - Sanjay K. Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), 470 003, India
| |
Collapse
|
11
|
Li RL, He LY, Zhang Q, Liu J, Lu F, Duan HXY, Fan LH, Peng W, Huang YL, Wu CJ. HIF-1α is a Potential Molecular Target for Herbal Medicine to Treat Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4915-4949. [PMID: 33235435 PMCID: PMC7680173 DOI: 10.2147/dddt.s274980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
HIF-1α is an important factor regulating oxygen balance in mammals, and its expression is closely related to various physiological and pathological conditions of the body. Because HIF-1α plays an important role in the occurrence and development of cancer and other diseases, it has become an enduring research hotspot. At the same time, natural medicines and traditional Chinese medicine compounds have amazing curative effects in various diseases related to HIF-1 subtype due to their unique pharmacological effects and more effective ingredients. Therefore, in this article, we first outline the structure of HIF-1α and the regulation related to its expression, then introduce various diseases closely related to HIF-1α, and finally focus on the regulation of natural medicines and compound Chinese medicines through various pathways. This will help us understand HIF-1α systematically, and use HIF-1α as a target to discover more natural medicines and traditional Chinese medicines that can treat related diseases.
Collapse
Affiliation(s)
- Ruo-Lan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Li-Ying He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Feng Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Hu-Xin-Yue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Lin-Hong Fan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Yong-Liang Huang
- Pharmacy Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, People's Republic of China
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| |
Collapse
|
12
|
Al-Akayleh F, Al-Naji I, Adwan S, Al-Remawi M, Shubair M. Enhancement of Curcumin Solubility Using a Novel Solubilizing Polymer Soluplus®. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09500-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Ashrafizadeh M, Najafi M, Makvandi P, Zarrabi A, Farkhondeh T, Samarghandian S. Versatile role of curcumin and its derivatives in lung cancer therapy. J Cell Physiol 2020; 235:9241-9268. [PMID: 32519340 DOI: 10.1002/jcp.29819] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is a main cause of death all over the world with a high incidence rate. Metastasis into neighboring and distant tissues as well as resistance of cancer cells to chemotherapy demand novel strategies in lung cancer therapy. Curcumin is a naturally occurring nutraceutical compound derived from Curcuma longa (turmeric) that has great pharmacological effects, such as anti-inflammatory, neuroprotective, and antidiabetic. The excellent antitumor activity of curcumin has led to its extensive application in the treatment of various cancers. In the present review, we describe the antitumor activity of curcumin against lung cancer. Curcumin affects different molecular pathways such as vascular endothelial growth factors, nuclear factor-κB (NF-κB), mammalian target of rapamycin, PI3/Akt, microRNAs, and long noncoding RNAs in treatment of lung cancer. Curcumin also can induce autophagy, apoptosis, and cell cycle arrest to reduce the viability and proliferation of lung cancer cells. Notably, curcumin supplementation sensitizes cancer cells to chemotherapy and enhances chemotherapy-mediated apoptosis. Curcumin can elevate the efficacy of radiotherapy in lung cancer therapy by targeting various signaling pathways, such as epidermal growth factor receptor and NF-κB. Curcumin-loaded nanocarriers enhance the bioavailability, cellular uptake, and antitumor activity of curcumin. The aforementioned effects are comprehensively discussed in the current review to further direct studies for applying curcumin in lung cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|