1
|
Takalani F, Kumar P, Kondiah PPD, Choonara YE. Co-emulsified Alginate-Eudragit Nanoparticles: Potential Carriers for Localized and Time-defined Release of Tenofovir in the Female Genital Tract. AAPS PharmSciTech 2024; 25:15. [PMID: 38200167 DOI: 10.1208/s12249-023-02723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
This research aimed to explore the possibilities of Eudragit S100 (ES100) and sodium alginate as carriers for tenofovir disoproxil fumarate (TDF) in the female genital tract. Alginate and alginate-ES100 nanoparticles were prepared using the ionic gelation and emulsion/gelation complexation method, respectively. The nanocarriers were tested using morphological, physicochemical, in vitro drug release, and cytotoxicity analyses. In SEM and TEM images, the presence of spherical and uniformly distributed nanoparticles was revealed. The FTIR spectrum showed that alginate and calcium chloride interacted due to ionic bonds linking divalent calcium ions and the -COO- of alginate groups. Alginate and ES100 interacted via the ester C=O amide stretching. The results obtained from XRD and DSC, on the other hand, revealed a favorable interaction between sodium alginate and ES100 polymers, as evidenced by the crystallization peaks observed. Under experimental design analysis and optimization, overall size distribution profiles ranged from 134.9 to 228.0 nm, while zeta potential results showed stable nanoparticles (-17.8 to -38.4 MV). The optimal formulation exhibited a maximum cumulative in vitro release of 72% (pH 4.2) up to 96 h. The cytotoxicity tests revealed the safety of TDF-loaded nanoparticles on vaginal epithelial cells at concentrations of 0.025 mg/mL, 0.5 mg/mL, and 1 mg/mL for 72 h. These results indicated that alginate-ES100 nanoparticles have the potential to preserve and sustain the release of the TDF drug in the FGT. The future goal is to develop a low-dose non-toxic microbicide that can be administered long term in the vagina to cater to both pregnant and non-pregnant HIV patients.
Collapse
Affiliation(s)
- Funanani Takalani
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa.
| |
Collapse
|
2
|
Skosana P, Mudenda S, Demana PH, Witika BA. Exploring Nanotechnology as a Strategy to Circumvent Antimicrobial Resistance in Bone and Joint Infections. ACS OMEGA 2023; 8:15865-15882. [PMID: 37179611 PMCID: PMC10173345 DOI: 10.1021/acsomega.3c01225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
Bone and joint infections (BJIs) are difficult to treat, necessitating antimicrobial therapy at high doses for an extended period of time, in some cases different from our local guidelines. As a consequence of the rise in antimicrobial-resistant organisms, drugs that were previously reserved for last-line defense are now being used as first line treatment, and the pill burden and adverse effects on patients are leading to nonadherence, encouraging antimicrobial resistance (AMR) to these last-resort medicines. Nanodrug delivery is the field of pharmaceutical sciences and drug delivery which combines nanotechnology with chemotherapy and/or diagnostics to improve treatment and diagnostic outcomes by targeting specific cells or tissues affected. Delivery systems based on lipids, polymers, metals, and sugars have been used in an attempt to provide a way around AMR. This technology has the potential to improve drug delivery by targeting the site of infection and using the appropriate amount of antibiotics to treat BJIs caused by highly resistant organisms. This Review aims to provide an in-depth examination of various nanodrug delivery systems used to target the causative agents in BJI.
Collapse
Affiliation(s)
- Phumzile
P. Skosana
- Department
of Clinical Pharmacy, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| | - Steward Mudenda
- Department
of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia
| | - Patrick H. Demana
- Department
of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| | - Bwalya A. Witika
- Department
of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| |
Collapse
|
3
|
Debotton N, Grasiani S, Cohen Y, Dahan A. Enabling Oral Delivery of Antiviral Drugs: Double Emulsion Carriers to Improve the Intestinal Absorption of Zanamivir. Int J Pharm 2022; 629:122392. [DOI: 10.1016/j.ijpharm.2022.122392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
|
4
|
Witika BA, Poka MS, Demana PH, Matafwali SK, Melamane S, Malungelo Khamanga SM, Makoni PA. Lipid-Based Nanocarriers for Neurological Disorders: A Review of the State-of-the-Art and Therapeutic Success to Date. Pharmaceutics 2022; 14:836. [PMID: 35456669 PMCID: PMC9031624 DOI: 10.3390/pharmaceutics14040836] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Neurodegenerative disorders including Alzheimer's, Parkinson's, and dementia are chronic and advanced diseases that are associated with loss of neurons and other related pathologies. Furthermore, these disorders involve structural and functional defections of the blood-brain barrier (BBB). Consequently, advances in medicines and therapeutics have led to a better appreciation of various pathways associated with the development of neurodegenerative disorders, thus focusing on drug discovery and research for targeted drug therapy to the central nervous system (CNS). Although the BBB functions as a shield to prevent toxins in the blood from reaching the brain, drug delivery to the CNS is hindered by its presence. Owing to this, various formulation approaches, including the use of lipid-based nanocarriers, have been proposed to address shortcomings related to BBB permeation in CNS-targeted therapy, thus showing the potential of these carriers for translation into clinical use. Nevertheless, to date, none of these nanocarriers has been granted market authorization following the successful completion of all stages of clinical trials. While the aforementioned benefits of using lipid-based carriers underscores the need to fast-track their translational development into clinical practice, technological advances need to be initiated to achieve appropriate capacity for scale-up and the production of affordable dosage forms.
Collapse
Affiliation(s)
- Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Madan Sai Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Patrick Hulisani Demana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; (M.S.P.); (P.H.D.)
| | - Scott Kaba Matafwali
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK;
| | - Siyabonga Melamane
- Stutterheim Hospital, No.1 Hospital Street, Stutterheim 4930, South Africa;
| | | | - Pedzisai Anotida Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
5
|
Miao YB, Lin YJ, Chen KH, Luo PK, Chuang SH, Yu YT, Tai HM, Chen CT, Lin KJ, Sung HW. Engineering Nano- and Microparticles as Oral Delivery Vehicles to Promote Intestinal Lymphatic Drug Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104139. [PMID: 34596293 DOI: 10.1002/adma.202104139] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Targeted oral delivery of a drug via the intestinal lymphatic system (ILS) has the advantages of protecting against hepatic first-pass metabolism of the drug and improving its pharmacokinetic performance. It is also a promising route for the oral delivery of vaccines and therapeutic agents to induce mucosal immune responses and treat lymphatic diseases, respectively. This article describes the anatomical structures and physiological characteristics of the ILS, with an emphasis on enterocytes and microfold (M) cells, which are the main gateways for the transport of particulate delivery vehicles across the intestinal epithelium into the lymphatics. A comprehensive overview of recent advances in the rational engineering of particulate vehicles, along with the challenges and opportunities that they present for improving ILS drug delivery, is provided, and the mechanisms by which such vehicles target and transport through enterocytes or M cells are discussed. The use of naturally sourced materials, such as yeast microcapsules and their derived polymeric β-glucans, as novel ILS-targeting delivery vehicles is also reviewed. Such use is the focus of an emerging field of research. Their potential use in the oral delivery of nucleic acids, such as mRNA vaccines, is proposed.
Collapse
Affiliation(s)
- Yang-Bao Miao
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Yu-Jung Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Kuan-Hung Chen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Po-Kai Luo
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Shun-Hao Chuang
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Yu-Tzu Yu
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Hsien-Meng Tai
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, Republic of China
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, and Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| |
Collapse
|
6
|
Franklyne JS, Gopinath PM, Mukherjee A, Chandrasekaran N. Nanoemulsions: The rising star of antiviral therapeutics and nanodelivery system-current status and prospects. Curr Opin Colloid Interface Sci 2021; 54:101458. [PMID: 33814954 PMCID: PMC8007535 DOI: 10.1016/j.cocis.2021.101458] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanoemulsions (NEs) of essential oil (EO) have significant potential to target microorganisms, especially viruses. They act as a vehicle for delivering antiviral drugs and vaccines. Narrowing of drug discovery pipeline and the emergence of new viral diseases, especially, coronavirus disease, have created a niche to use NEs for augmenting currently available therapeutic options. Published literature demonstrated that EOs have an inherent broad spectrum of activity across bacterial, fungal, and viral pathogens. The emulsification process significantly improved the efficacy of the active ingredients in the EOs. This article highlights the research findings and patent developments in the last 2 years especially, in EO antiviral activity, antiviral drug delivery, vaccine delivery, viral resistance development, and repurposing EO compounds against SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore, 32014, Tamil Nadu, India
| | | |
Collapse
|
7
|
Kajbafvala A, Salabat A. Microemulsion and microemulsion gel formulation for transdermal delivery of rutin: Optimization, in-vitro/ex-vivo evaluation and SPF determination. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1880928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Azar Kajbafvala
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
| | - Alireza Salabat
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran
| |
Collapse
|
8
|
Taneja P, Sharma S, Sinha VB, Yadav AK. Advancement of nanoscience in development of conjugated drugs for enhanced disease prevention. Life Sci 2021; 268:118859. [PMID: 33358907 DOI: 10.1016/j.lfs.2020.118859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022]
Abstract
Nanoscience and nanotechnology is a recently emerging and rapid developing field of science and has also been explored in the fields of Biotechnology and Medicine. Nanoparticles are being used as tools for diagnostic purposes and as a medium for the delivery of therapeutic agents to the specific targeted sites under controlled conditions. The physicochemical properties of these nanoparticles give them the ability to treat various chronic human diseases by site specific drug delivery and to use in diagnosis, biosensing and bioimaging devices, and implants. According to the type of materials used nanoparticles can be classified as organic (micelles, liposomes, nanogels and dendrimers) and inorganic (including gold nanoparticles (GNPs), super-paramagnetic iron oxide nanomaterials (SPIONs), quantum dots (QDs), and paramagnetic lanthanide ions). Different types of nanoparticle are being used in conjugation with various types of biomoities (such as peptide, lipids, antibodies, nucleotides, plasmids, ligands and polysaccharides) to form nanoparticle-drug conjugates which has enhanced capacity of drug delivery at targeted sites and hence improved disease treatment and diagnosis. In this study, the summary of various types of nanoparticle-drug conjugates that are being used along with their mechanism and applications are included. In addition, the various nanoparticle-drug conjugates which are being used and which are under clinical studies along with their future opportunities and challenges are also discussed in this review.
Collapse
Affiliation(s)
- Pankaj Taneja
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India.
| | - Sonali Sharma
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vimlendu Bhushan Sinha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Ajay Kumar Yadav
- BR Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
9
|
Ramesh D, Vijayakumar BG, Kannan T. Therapeutic potential of uracil and its derivatives in countering pathogenic and physiological disorders. Eur J Med Chem 2020; 207:112801. [PMID: 32927231 DOI: 10.1016/j.ejmech.2020.112801] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
Uracil is one of the most notable pharmacophores in medicinal chemistry as the pyrimidine nucleobase forms an integral part of many commercial drugs. Though the name uracil is usually associated with cancer drugs, there are many uracil-based compounds which can treat different diseases when they are employed. So far, there has been no in-depth review concerning uracil drugs in the market, or in the different stages of clinical trials, including those approved or discontinued. The current work focuses on the importance of uracil and its derivatives in treating different diseases. The use of uracil compounds in treating viral infections, cancer, diabetic, thyroid and autosomal recessive disorders are discussed in the review. The mechanism of action of each uracil drug with emphasis on their structure and properties are discussed in detail. The targeted action of these drugs on sites or on the different stages of a disorder/pathogenic life cycle are also discussed. This review encompasses uracil drugs approved as well as those in development from the 1950's onwards. The utility of uracil in drug discovery and its association with a wide range of diseases is brought forth within this review to demonstrate its potential to a wider audience.
Collapse
Affiliation(s)
- Deepthi Ramesh
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, 605014, India
| | | | - Tharanikkarasu Kannan
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, 605014, India.
| |
Collapse
|