1
|
Pérez R, Burgos V, Marín V, Camins A, Olloquequi J, González-Chavarría I, Ulrich H, Wyneke U, Luarte A, Ortiz L, Paz C. Caffeic Acid Phenethyl Ester (CAPE): Biosynthesis, Derivatives and Formulations with Neuroprotective Activities. Antioxidants (Basel) 2023; 12:1500. [PMID: 37627495 PMCID: PMC10451560 DOI: 10.3390/antiox12081500] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 08/27/2023] Open
Abstract
Neurodegenerative disorders are characterized by a progressive process of degeneration and neuronal death, where oxidative stress and neuroinflammation are key factors that contribute to the progression of these diseases. Therefore, two major pathways involved in these pathologies have been proposed as relevant therapeutic targets: The nuclear transcription factor erythroid 2 (Nrf2), which responds to oxidative stress with cytoprotecting activity; and the nuclear factor NF-κB pathway, which is highly related to the neuroinflammatory process by promoting cytokine expression. Caffeic acid phenethyl ester (CAPE) is a phenylpropanoid naturally found in propolis that shows important biological activities, including neuroprotective activity by modulating the Nrf2 and NF-κB pathways, promoting antioxidant enzyme expression and inhibition of proinflammatory cytokine expression. Its simple chemical structure has inspired the synthesis of many derivatives, with aliphatic and/or aromatic moieties, some of which have improved the biological properties. Moreover, new drug delivery systems increase the bioavailability of these compounds in vivo, allowing its transcytosis through the blood-brain barrier, thus protecting brain cells from the increased inflammatory status associated to neurodegenerative and psychiatric disorders. This review summarizes the biosynthesis and chemical synthesis of CAPE derivatives, their miscellaneous activities, and relevant studies (from 2010 to 2023), addressing their neuroprotective activity in vitro and in vivo.
Collapse
Affiliation(s)
- Rebeca Pérez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Víctor Marín
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institut de Neurociències (UBNeuro), Universitat de Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Jordi Olloquequi
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción 4030000, Chile;
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidad de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, SP, Brazil;
| | - Ursula Wyneke
- Facultad de Medicina, Universidad de Los Andes, Santiago 111711, Chile; (U.W.)
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago 7620001, Chile
| | - Alejandro Luarte
- Facultad de Medicina, Universidad de Los Andes, Santiago 111711, Chile; (U.W.)
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago 7620001, Chile
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia 5110566, Chile;
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (R.P.); (V.M.)
| |
Collapse
|
2
|
Kaya S, Yilmaz DE, Akmayan I, Egri O, Arasoglu T, Derman S. Caffeic Acid Phenethyl Ester Loaded Electrospun Nanofibers for Wound Dressing Application. J Pharm Sci 2021; 111:734-742. [PMID: 34600940 DOI: 10.1016/j.xphs.2021.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 01/25/2023]
Abstract
Electrospinning is an advantageous method with a wide usage area, which enables the production of materials consisting of nano-thickness fibers. In this study, caffeic acid phenethyl ester (CAPE) molecule was loaded onto the poly(lactic-co-glycolic acid) (PLGA) nanofibers and obtained nanofibers were physicochemically and biologically investigated for the first time in the literature. The existence of CAPE molecules, loaded on PLGA membranes by dropping and spraying methods, was evaluated by a comparative investigation of Fourier-transform infrared (FTIR) spectra and X-Ray diffraction (XRD) patterns. Fiber morphology of the membranes was investigated by scanning electron microscope (SEM). CAPE release and swelling behaviors of the membranes were studied in vitro. The radical scavenging activity of CAPE-loaded wound dressing materials was determined by using an antioxidant assay. The antimicrobial properties of PLGA and CAPE-loaded PLGA membranes were evaluated against S. aureus, P. aeruginosa and C. albicans strains by the time-kill method. The biocompatibility study of the obtained CAPE-loaded fibers conducted on human fibroblast cell line and wound healing promoting effect of the fibers was investigated in vitro scratch assay. The results show that CAPE-loaded PLGA membranes are highly antimicrobial against all strains used in the experiment. Additionally, the results show that they are biocompatible and have wound healing properties on human fibroblasts.
Collapse
Affiliation(s)
- Seçil Kaya
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Istanbul, Turkey
| | - Duygu Elif Yilmaz
- Charité - Universitätsmedizin Berlin, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Ilkgül Akmayan
- Yildiz Technical University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Ozlem Egri
- Tokat Gaziosmanpasa University, Faculty of Engineering and Natural Sciences, Department of Bioengineering, Tokat, Turkey
| | - Tülin Arasoglu
- Yildiz Technical University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey
| | - Serap Derman
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Istanbul, Turkey.
| |
Collapse
|
3
|
Kalinova R, Valchanova M, Dimitrov I, Turmanova S, Ugrinova I, Petrova M, Vlahova Z, Rangelov S. Functional Polyglycidol-Based Block Copolymers for DNA Complexation. Int J Mol Sci 2021; 22:9606. [PMID: 34502513 PMCID: PMC8431755 DOI: 10.3390/ijms22179606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
Gene therapy is an attractive therapeutic method for the treatment of genetic disorders for which the efficient delivery of nucleic acids into a target cell is critical. The present study is aimed at evaluating the potential of copolymers based on linear polyglycidol to act as carriers of nucleic acids. Functional copolymers with linear polyglycidol as a non-ionic hydrophilic block and a second block bearing amine hydrochloride pendant groups were prepared using previously synthesized poly(allyl glycidyl ether)-b-polyglycidol block copolymers as precursors. The amine functionalities were introduced via highly efficient radical addition of 2-aminoethanethiol hydrochloride to the alkene side groups. The modified copolymers formed loose aggregates with strongly positive surface charge in aqueous media, stabilized by the presence of dodecyl residues at the end of the copolymer structures and the hydrogen-bonding interactions in polyglycidol segments. The copolymer aggregates were able to condense DNA into stable and compact nanosized polyplex particles through electrostatic interactions. The copolymers and the corresponding polyplexes showed low to moderate cytotoxicity on a panel of human cancer cell lines. The cell internalization evaluation demonstrated the capability of the polyplexes to successfully deliver DNA into the cancer cells.
Collapse
Affiliation(s)
- Radostina Kalinova
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Miroslava Valchanova
- Department of Material Science and Technology, University “Prof. Assen Zlatarov”, 8010 Burgas, Bulgaria; (M.V.); (S.T.)
| | - Ivaylo Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Sevdalina Turmanova
- Department of Material Science and Technology, University “Prof. Assen Zlatarov”, 8010 Burgas, Bulgaria; (M.V.); (S.T.)
| | - Iva Ugrinova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.P.); (Z.V.)
| | - Maria Petrova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.P.); (Z.V.)
| | - Zlatina Vlahova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.P.); (Z.V.)
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|