1
|
Petka K, Sroka P, Tarko T, Duda-Chodak A. The Acrylamide Degradation by Probiotic Strain Lactobacillus acidophilus LA-5. Foods 2022; 11:foods11030365. [PMID: 35159515 PMCID: PMC8834551 DOI: 10.3390/foods11030365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Acrylamide is a harmful substance produced in thermal processed food; however, it can also be found in food with various additives. The aim of the study was to check whether the probiotic bacteria strain, Lactobacillus acidophilus LA-5 (LA5), can degrade acrylamide and hence reduce its concentration in foodstuff. Our results revealed that LA5 can degrade acrylamide and cause a decrease in its concentration, but only when other available carbon and nitrogen sources are lacking. In the presence of casein, lactose, milk fat or in whole cow’s milk, this ability disappeared. Acrylamide present in milk, however, modulated the bacteria metabolism by significantly enhancing lactic acid production by LA5 in milk (at conc. 100 µg/mL), while the production of acetic acid was rather reduced.
Collapse
Affiliation(s)
- Katarzyna Petka
- Department of Plant Products Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Kraków, Poland;
| | - Paweł Sroka
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Kraków, Poland; (P.S.); (T.T.)
| | - Tomasz Tarko
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Kraków, Poland; (P.S.); (T.T.)
| | - Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Kraków, Poland; (P.S.); (T.T.)
- Correspondence:
| |
Collapse
|
2
|
Wang YT, Shen RX, Xing D, Zhao CP, Gao HT, Wu JH, Zhang N, Zhang HD, Chen Y, Zhao TY, Li CX. Metagenome Sequencing Reveals the Midgut Microbiota Makeup of Culex pipiens quinquefasciatus and Its Possible Relationship With Insecticide Resistance. Front Microbiol 2021; 12:625539. [PMID: 33717014 PMCID: PMC7948229 DOI: 10.3389/fmicb.2021.625539] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/25/2021] [Indexed: 01/01/2023] Open
Abstract
Midgut microbiota can participate in the detoxification and metabolism processes in insects, but there are few reports on the relationship between midgut microbiota and insecticide resistance in mosquitoes. In this study, we performed metagenomic sequencing on a susceptible strain (SS), a field-collected Hainan strain (HN), and a deltamethrin-resistant strain (RR) of Culex pipiens quinquefasciatus to understand the diversity and functions of their midgut microbiota. The results revealed differences in midgut microbiota among the three strains of Cx. pipiens quinquefasciatus. At the phylum level, Proteobacteria was the most prominent, accounting for nearly 70% of their midgut microbes. At the genus level, Aeromonas made up the highest proportion. In addition, Aeromonas, Morganella, Elizabethkingia, Enterobacter, Cedecea, and Thorsellia showed significant differences between strains. At the species level, Bacillus cereus, Enterobacter cloacae complex sp. 4DZ3-17B2, Streptomyces sp. CNQ329, and some species of Pseudomonas and Wolbachia were more abundant in the two resistant strains. Principal component analysis (PCA) showed that the SS strain had significantly different metagenomic functions than the two deltamethrin-resistant strains (HN and RR strain). The HN and RR strains differed from the SS strain in more than 10 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The analysis of species abundance and functional diversity can provide directions for future studies.
Collapse
Affiliation(s)
- Yi-Ting Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Institute of Microbiology and Epidemiology, Beijing, China
| | - Rui-Xin Shen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Institute of Microbiology and Epidemiology, Beijing, China.,School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Institute of Microbiology and Epidemiology, Beijing, China
| | - Chen-Pei Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Institute of Microbiology and Epidemiology, Beijing, China.,College of Life Sciences, Ludong University, Yantai, China
| | - He-Ting Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Institute of Microbiology and Epidemiology, Beijing, China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jia-Hong Wu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Ning Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Institute of Microbiology and Epidemiology, Beijing, China
| | - Heng-Duan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yan Chen
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Tong-Yan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Institute of Microbiology and Epidemiology, Beijing, China
| | - Chun-Xiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector Borne and Natural Focus Infectious Disease, Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
3
|
Guo M, Yang L, Li J, Jiao S, Wang Y, Luo G, Yu H. Effects of interface adsorption of Rhodococcus ruber TH3 cells on the biocatalytic hydration of acrylonitrile to acrylamide. Bioprocess Biosyst Eng 2018; 41:931-938. [DOI: 10.1007/s00449-018-1924-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/11/2018] [Indexed: 11/25/2022]
|
4
|
Chen X, Yang C, Wang W, Ge B, Zhang J, Liu Y, Nan Y. Biodegradation of N,N-dimethylacetamide by Rhodococcus sp. strain B83 isolated from the rhizosphere of pagoda tree. J Environ Sci (China) 2017; 53:88-98. [PMID: 28372764 DOI: 10.1016/j.jes.2016.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 06/07/2023]
Abstract
The biodegradation characteristic and potential metabolic pathway for removal of environmental N,N-dimethylacetamide (DMAC) by Rhodococcus sp. strain B83 was studied. Rhodococcus sp. strain B83 was isolated from the rhizosphere of a pagoda tree and proved capable of utilizing DMAC as sole source of carbon and nitrogen. Batch culture studies showed that strain B83 could tolerate up to 25g/L DMAC and showed distinct growth on possible catabolic intermediates except for acetate. The nitrogen balance analysis revealed that approximately 71% of the initial nitrogen was converted to organic nitrogen. DMAC degradation has led to accumulation of acetate and organic nitrogen, meanwhile traces of nitrate and ammonia was build-up but without nitrite. The growth of strain B83 could be inhibited by adding exogenous acetate. By means of the assay of enzymatic degradation of DMAC, several catabolic intermediates at different intervals were observed and identified. Based on the results obtained from culture solution and enzymatic degradation assay, a detailed pathway is proposed for DMAC biodegradation.
Collapse
Affiliation(s)
- Xingdu Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Chengjian Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weiwei Wang
- School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bizhou Ge
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yucan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yaping Nan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
6
|
Duda-Chodak A, Wajda Ł, Tarko T, Sroka P, Satora P. A review of the interactions between acrylamide, microorganisms and food components. Food Funct 2016; 7:1282-95. [DOI: 10.1039/c5fo01294e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acrylamide (AA) and its metabolites have been recognized as potential carcinogens, but also they can cause other negative symptoms in human or animal organisms and therefore this class of chemical compounds has attracted a lot of attention.
Collapse
Affiliation(s)
- A. Duda-Chodak
- Faculty of Food Technology
- University of Agriculture in Krakow
- 30-149 Krakow
- Poland
| | - Ł. Wajda
- Faculty of Food Technology
- University of Agriculture in Krakow
- 30-149 Krakow
- Poland
| | - T. Tarko
- Faculty of Food Technology
- University of Agriculture in Krakow
- 30-149 Krakow
- Poland
| | - P. Sroka
- Faculty of Food Technology
- University of Agriculture in Krakow
- 30-149 Krakow
- Poland
| | - P. Satora
- Faculty of Food Technology
- University of Agriculture in Krakow
- 30-149 Krakow
- Poland
| |
Collapse
|
7
|
Guezennec AG, Michel C, Bru K, Touze S, Desroche N, Mnif I, Motelica-Heino M. Transfer and degradation of polyacrylamide-based flocculants in hydrosystems: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:6390-6406. [PMID: 25253053 DOI: 10.1007/s11356-014-3556-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
The aim of this review was to summarize information and scientific data from the literature dedicated to the fate of polyacrylamide (PAM)-based flocculants in hydrosystems. Flocculants, usually composed of PAMs, are widely used in several industrial fields, particularly in minerals extraction, to enhance solid/liquid separation in water containing suspended matter. These polymers can contain residual monomer of acrylamide (AMD), which is known to be a toxic compound. This review focuses on the mechanisms of transfer and degradation, which can affect both PAM and residual AMD, with a special attention given to the potential release of AMD during PAM degradation. Due to the ability of PAM to adsorb onto mineral particles, its transport in surface water, groundwater, and soils is rather limited and restricted to specific conditions. PAM can also be a subject of biodegradation, photodegradation, and mechanical degradation, but most of the studies report slow degradation rates without AMD release. On the contrary, the adsorption of AMD onto particles is very low, which could favor its transfer in surface waters and groundwater. However, AMD transfer is likely to be limited by quick microbial degradation.
Collapse
|