1
|
Characterization of Biofilm Microbiome Formation Developed on Novel 3D-Printed Zeolite Biocarriers during Aerobic and Anaerobic Digestion Processes. FERMENTATION 2022. [DOI: 10.3390/fermentation8120746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background: Aerobic or anaerobic digestion is involved in treating agricultural and municipal waste, and the addition of biocarriers has been proven to improve them further. We synthesized novel biocarriers utilizing zeolites and different inorganic binders and compared their efficiency with commercially available biocarriers in aerobic and anaerobic digestion systems. Methods: We examined BMP and several physicochemical parameters to characterize the efficiency of novel biocarriers on both systems. We also determined the SMP and EPS content of synthesized biofilm and measured the adherence and size of the forming biofilm. Finally, we characterized the samples by 16S rRNA sequencing to determine the crucial microbial communities involved. Results: Evaluating BMP results, ZSM-5 zeolite with bentonite binder emerged, whereas ZSM-5 zeolite with halloysite nanotubes binder stood out in the wastewater treatment experiment. Twice the relative frequencies of archaea were found on novel biocarriers after being placed in AD batch reactors, and >50% frequencies of Proteobacteria after being placed in WWT reactors, compared to commercial ones. Conclusions: The newly synthesized biocarriers were not only equally efficient with the commercially available ones, but some were even superior as they greatly enhanced aerobic or anaerobic digestion and showed strong biofilm formation and unique microbiome signatures.
Collapse
|
2
|
Kurniawan SB, Abdullah SRS, Imron MF, Said NSM, Ismail N‘I, Hasan HA, Othman AR, Purwanti IF. Challenges and Opportunities of Biocoagulant/Bioflocculant Application for Drinking Water and Wastewater Treatment and Its Potential for Sludge Recovery. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9312. [PMID: 33322826 PMCID: PMC7764310 DOI: 10.3390/ijerph17249312] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
The utilization of metal-based conventional coagulants/flocculants to remove suspended solids from drinking water and wastewater is currently leading to new concerns. Alarming issues related to the prolonged effects on human health and further pollution to aquatic environments from the generated nonbiodegradable sludge are becoming trending topics. The utilization of biocoagulants/bioflocculants does not produce chemical residue in the effluent and creates nonharmful, biodegradable sludge. The conventional coagulation-flocculation processes in drinking water and wastewater treatment, including the health and environmental issues related to the utilization of metal-based coagulants/flocculants during the processes, are discussed in this paper. As a counterpoint, the development of biocoagulants/bioflocculants for drinking water and wastewater treatment is intensively reviewed. The characterization, origin, potential sources, and application of this green technology are critically reviewed. This review paper also provides a thorough discussion on the challenges and opportunities regarding the further utilization and application of biocoagulants/bioflocculants in water and wastewater treatment, including the importance of the selection of raw materials, the simplification of extraction processes, the application to different water and wastewater characteristics, the scaling up of this technology to a real industrial scale, and also the potential for sludge recovery by utilizing biocoagulants/bioflocculants in water/wastewater treatment.
Collapse
Affiliation(s)
- Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (S.B.K.); (S.R.S.A.); (N.S.M.S.); (N.I.I.); (H.A.H.); (A.R.O.)
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (S.B.K.); (S.R.S.A.); (N.S.M.S.); (N.I.I.); (H.A.H.); (A.R.O.)
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
| | - Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (S.B.K.); (S.R.S.A.); (N.S.M.S.); (N.I.I.); (H.A.H.); (A.R.O.)
| | - Nur ‘Izzati Ismail
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (S.B.K.); (S.R.S.A.); (N.S.M.S.); (N.I.I.); (H.A.H.); (A.R.O.)
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (S.B.K.); (S.R.S.A.); (N.S.M.S.); (N.I.I.); (H.A.H.); (A.R.O.)
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia; (S.B.K.); (S.R.S.A.); (N.S.M.S.); (N.I.I.); (H.A.H.); (A.R.O.)
| | - Ipung Fitri Purwanti
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia;
| |
Collapse
|
3
|
Park JH, Kim SH, Park HD, Lim DJ, Yoon JJ. Feasibility of anaerobic digestion from bioethanol fermentation residue. BIORESOURCE TECHNOLOGY 2013; 141:177-183. [PMID: 23561951 DOI: 10.1016/j.biortech.2013.03.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/06/2013] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
The focus of this study was the reuse of red algal ethanol fermentation residue as feedstock for anaerobic digestion. Levulinic acid and formic acid, the dilute-acid hydrolysis byproducts, inhibited methanogenesis at concentrations over 3.0 and 0.5 g/L, respectively. However, the inhibition was overcome by increasing inoculum concentration. A series of batch experiments with the fermentation residue showed increased methane yield and productivity at higher inoculum concentration. The maximum methane conversion rate of 84.8% was found at 5 g COD/L of fermentation residue at 0.25 g COD/g VSS of food-to-microorganism (F/M) ratio. The red algal ethanol fermentation residue can possibly be used as a feedstock in anaerobic digestion at appropriate concentration and F/M ratio.
Collapse
Affiliation(s)
- Jeong-Hoon Park
- Green Materials Technology Center, Korea Institute of Industrial Technology, 35-3 Hongcheon-ri, Ipjang-myeon, Cheonan, Chungnam 330-825, Republic of Korea
| | | | | | | | | |
Collapse
|