1
|
Huang F, Tang J, Xu L, Campos LC. Deciphering the synergistic effects of photolysis and biofiltration to actuate elimination of estrogens in natural water matrix. WATER RESEARCH 2024; 249:120976. [PMID: 38064783 DOI: 10.1016/j.watres.2023.120976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
The presence of estrogens in water environments has raised concerns for human health and ecosystems balance. These substances possess potent estrogenic properties, causing severe disruptions in endocrine systems and leading to reproductive and developmental problems. Unfortunately, conventional treatment methods struggle to effectively remove estrogens and mitigate their effects, necessitating technological innovation. This study investigates the effectiveness of a novel sequential photolysis-granular activated carbon (GAC) sandwich biofiltration (GSBF) system in removing estrogens (E1, E2, E3, and EE2) and improving general water quality parameters. The results indicate that combining photolysis pre-treatment with GSBF consistently achieved satisfactory performance in terms of turbidity, dissolved organic carbon (DOC), UV254, and microbial reduction, with over 77.5 %, 80.2 %, 89.7 %, and 92 % reduction, respectively. Furthermore, this approach effectively controlled the growth of microbial biomass under UV irradiation, preventing excessive head loss. To assess estrogen removal, liquid chromatography-tandem mass spectrometry (LC-MS) measured their concentrations, while bioassays determined estrogenicity. The findings demonstrate that GSBF systems, with and without photolysis installation, achieved over 96.2 % removal for estrogens when the spike concentration of each targeted compound was 10 µg L-1, successfully reducing estrogenicity (EA/EA0) to levels below 0.05. Additionally, the study evaluated the impact of different thicknesses of GAC layer filling (8 cm, 16 cm, and 24 cm) and found no significant difference (p>0.05) in estrogen and estrogenicity removal among them.
Collapse
Affiliation(s)
- Fan Huang
- Centre for Urban Sustainability and Resilience, Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 6BT, United Kingdom; State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, WC1E 6BT, United Kingdom; Industrial Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Like Xu
- Centre for Urban Sustainability and Resilience, Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Luiza C Campos
- Centre for Urban Sustainability and Resilience, Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
2
|
Tomei Torres FA, Masten SJ. Endocrine-disrupting substances: I. Relative risks of PFAS in drinking water. JOURNAL OF WATER AND HEALTH 2023; 21:451-462. [PMID: 37119147 DOI: 10.2166/wh.2023.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Concentrations of per and polyfluorinated alkyl substances (PFAS) in drinking water are significantly lower than in vivo levels of the native target hormone. These concentrations are orders of magnitude lower than the hormone in question, particularly when corrected for transactivation. A pregnant woman can excrete about 7,000 μg/day of total estrogens. A low-dose oral contraceptive pill contains 20 μg estradiol. Soy-based baby formula contains phytoestrogens equivalent to a low-dose oral contraceptive pill. A woman on a low-dose oral hormone replacement therapy consumes about 0.5-2 mg/day of one or more estrogens. The levels of endocrine-disrupting substances (EDSs) exposure by oral, respiratory, or dermal routes have the potential to make removing PFAS from drinking water due to its estrogenic activity divert valuable resources. These levels become even less of a threat when their estrogenic potencies are compared with those of the target hormones present as contaminants in water and even more so when compared with levels commonly present in human tissues. The fact that PFAS constitute a tiny fraction compared to exposure to phytoestrogens makes the effort even more insignificant. If PFAS are to be removed from drinking water, it is not due to their estrogenic activity.
Collapse
Affiliation(s)
- Francisco Alberto Tomei Torres
- Ibero-American Society of Environmental Health (SIBSA), Zabala 3555, Ciudad Autónoma de Buenos Aires (CABA), Rep. Argentina, CP 1427 E-mail:
| | - Susan J Masten
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
3
|
Li J, Campos LC, Zhang L, Xie W. Sand and sand-GAC filtration technologies in removing PPCPs: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157680. [PMID: 35907530 DOI: 10.1016/j.scitotenv.2022.157680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/24/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Concerns have been raised about the risks that pharmaceuticals and personal care products (PPCPs) in aquatic environments posed to humans and the environment. In recent years, sand filtration has been used to potentially remove these emerging contaminants from water. However, there has been no review of the effectiveness of this technology to date. This paper presents a brief introduction of sand filtration types, reviews the current progress in PPCPs removal through sand filtration, and discusses the mechanisms behind this process and the combination of granular activated carbon (GAC) and sand as an enhanced sand-GAC filtration technology. Sand filtration achieves a reasonable but highly variable degree of PPCPs removal. Biodegradation and adsorption are the two main mechanisms of PPCPs removal, in particular the biodegradation since adsorption capacity of sand is relatively low. Other processes, such as bio-sorption and indirect adsorption, may also contribute to PPCPs removal. To compensate for the inadequate PPCPs removal through sand filtration, porous GAC has been combined with sand to develop sand-GAC filtration technologies. Serial, dual, and sandwich filters have been investigated, and significant removal enhancement has been observed, due to the strengthened adsorption capacity, suggesting the applicability of these variants. Future research focus, such as investigating the influence of different operational conditions on sand filter performance, obtaining a deeper understanding of the various removal mechanisms, and investigating of long-term performance of the filter used for PPCPs removal, are suggested.
Collapse
Affiliation(s)
- Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Luiza C Campos
- Department of Civil, Environmental & Geomatic Engineering, Faculty of Engineering, University College London, London WC1E 6BT, UK
| | - Linyang Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Wenjun Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| |
Collapse
|
4
|
Nasser Fava NDM, Terin UC, Freitas BLS, Sabogal-Paz LP, Fernandez-Ibañez P, Anthony Byrne J. Household slow sand filters in continuous and intermittent flows and their efficiency in microorganism's removal from river water. ENVIRONMENTAL TECHNOLOGY 2022; 43:1583-1592. [PMID: 33092473 DOI: 10.1080/09593330.2020.1841834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to evaluate the efficiency of four household slow sand filter (HSSF) models for the removal of microorganisms from river water throughout the development of their biological layers (schmutzdecke). Two models were designed to be operated continuously (HSSF-CC and HSSF-CT) and two intermittently (HSSF-ID and HSSF-IF). Filters were fed daily with 48 L pre-treated river water (24 h sedimentation followed by filtration through a non-woven synthetic blanket). Water samples were quantified by coliform group bacteria and analysed by bright field microscopy to visualize the microorganisms. Total coliform reduction was between 1.42 ± 0.59 log and 2.96 ± 0.58 log, with continuous models showing a better performance (p-values < 0.004). Escherichia coli reduction varied from 1.49 ± 0.58 log to 2.09 ± 0.66 log and HSSF-IF, HSSF-CC and HSSF-CT presented a similar performance (p-values > 0.06), slightly better than the one presented by HSSF-ID (p-value=0.04). Microorganisms, such as algae, protozoa and helminths were detected by microscopy in raw water and pre-treated water. Algae were the most significant group in these samples, although they were not visualized by bright field microscopy in the filtered water. Results showed the potential of HSSF in microbiological risk reduction from river water, which increases the range of point-of-use water treatments in rural communities. However, additional studies of the HSSF biological layer must be performed.
Collapse
Affiliation(s)
- Natália de Melo Nasser Fava
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| | - Ulisses Costa Terin
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| | - Bárbara Luíza Souza Freitas
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| | - Lyda Patricia Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| | - Pilar Fernandez-Ibañez
- Nanotechnology and Integrated Bioengineering Centre, School of Engineering, Ulster University, Northern Ireland, UK
| | - John Anthony Byrne
- Nanotechnology and Integrated Bioengineering Centre, School of Engineering, Ulster University, Northern Ireland, UK
| |
Collapse
|
5
|
Pompei CME, Ciric L, Canales M, Karu K, Vieira EM, Campos LC. Influence of PPCPs on the performance of intermittently operated slow sand filters for household water purification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:174-185. [PMID: 28041695 DOI: 10.1016/j.scitotenv.2016.12.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
Removal of pharmaceuticals and personal care products (PPCPs) from drinking water is usually enhanced by advanced oxidation which is not affordable in low income countries. Slow sand filtration has been found to be capable of removing anti-inflammatory compounds, and its low maintenance costs and easy operation make it an attractive technology for treating drinking water in many parts of the world. In addition, slow sand filters can be used at both large and household scales. The biofilm (i.e. schmutzdecke) developed on the top of the sand and within the upper layers of the sand is acknowledged to be responsible for the water purification. However, it is possible that the PPCPs may affect the schmutzdecke development and microbial community within the filters, and consequently the performance of the filter. This study investigated two household slow sand filters (for water purification) operated intermittently with and without contamination by six PPCPs. Eleven parameters were monitored in the affluent and effluent water, including bacterial species present and schmutzdecke biomass development. Results demonstrated that the household slow sand filter performance was not affected by the 2μgL-1 of PPCPs in the water. There was no significant difference between filters for total coliforms and E. coli removal, but there was considerable difference between sampling times. Biomass considerably increased with the number of filtrations in both filters and there was no significant difference between filter biomass. However, it was found that more bacterial species were present in the period with no contamination than during the contamination period. Bacillus anthracis and Exiguobacterium sp. showed to be resistant to the effects of the PPCPs. These suggest there are effects of PPCPs on bacterial species within the filter. However, the effect of the PPCPs on biomass was not conclusive in this study and needs to be further investigated.
Collapse
Affiliation(s)
- Caroline M E Pompei
- Water Resources and Applied Ecology Center, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São Carlense, 400, Caixa Postal 292, São Carlos, SP CEP 13560-970, Brazil
| | - Lena Ciric
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Melisa Canales
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Kersti Karu
- Department of Chemistry, University College London (UCL), London WC1E 6BT, United Kingdom
| | - Eny M Vieira
- Department of Chemistry and Molecular Physics, São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, Caixa Postal 780, São Carlos, SP CEP 13560-970, Brazil
| | - Luiza C Campos
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|