1
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
2
|
Chai Z, Zhang G, Ling X, Dong T, Wang J, Zhang Y, Zou P, Yang H, Zhou N, Chen Q, Zheng Y, Liu J, Cao J, Ao L. Low-level and combined exposure to environmental metal elements affects male reproductive outcomes: Prospective MARHCS study in population of college students in Chongqing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154395. [PMID: 35276165 DOI: 10.1016/j.scitotenv.2022.154395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Male fertility has shown a continuously declining tendency for decades. Over exposure to metal/metalloid elements has been proposed as associated with reproductive impairment. However, the hazard profile remained unclear in general public experiencing low-level and combined metal exposure. METHODS Based on the MARHCS cohort in Chongqing, China, 796 college students were recruited from June 2013 and 666 subjects were followed up next year. At each phase, semen and blood samples were collected for an assessment of semen quality and six sex hormones levels. Eighteen urinary metal/metalloid elements were quantified by ICP-MS as internal exposure biomarkers. Cluster analysis was conducted to characterize reproductive outcomes in the subgroups for different overall estimated exposure levels. Effects of each metal/metalloid element were analyzed using multiple statistical strategies: single-element mixed model, multiple-elements model and self before-after comparison design. RESULTS The urine concentration for 18 metal/metalloid elements was at a typically lower level (far away from the exposure limits) and positively associated with each other. After adjustment of the potential confounders, a decrease of 11.53% (95% CI: -18.61, -3.84%) and 10.84% (95% CI: -17.93, -3.14%) in spermatid morphology was observed in the highest quantile groups of vanadium (V) and nickel (Ni), respectively. Urinary silver (Ag) was dose-dependent associated with an increase in total sperm number (6.91%, 95% CI: 1.14, 13.00%), sperm concentration (16.38%, 95% CI: 5.15, 28.81%) and semen volume (23.73%, 95% CI: 10.46, 38.60%). Further, hormone testosterone presented a significant decrease in subgroup with higher overall estimated exposure and a stable negative association with lithium (Li). The above relationships remained significant across different statistical strategies (all p values <0.05). CONCLUSION Our study provided new evidences that exposure to metal/metalloid elements potentially exert bidirectional influences on semen quality at a relatively low level. And serum testosterone appears as a vulnerable index for metal exposure.
Collapse
Affiliation(s)
- Zili Chai
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Guanghui Zhang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Tingting Dong
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jingrong Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yanqi Zhang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Niya Zhou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao 266000, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Yin G, Xia L, Hou Y, Li Y, Cao D, Liu Y, Chen J, Liu J, Zhang L, Yang Q, Zhang Q, Tang N. Transgenerational male reproductive effect of prenatal arsenic exposure: abnormal spermatogenesis with Igf2/H19 epigenetic alteration in CD1 mouse. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1248-1260. [PMID: 33406855 DOI: 10.1080/09603123.2020.1870668] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Developmental exposure to environmental toxicants can induce transgenerational reproductive disease phenotypes through epigenetic mechanisms. We treated pregnant CD-1 (F0) mice with drinking water containing sodium arsenite (85 ppm) from days 8 to 18 of gestation. Male offspring were bred with untreated female mice until the F3 generation was produced. Our results revealed that F0 transient exposure to arsenic can cause decreased sperm quality and histological abnormalities in the F1 and F3. The overall methylation status of Igf2 DMR2 and H19 DMR was significantly lower in the arsenic-exposed group than that of the control group in both F1 and F3. The relative mRNA expression levels of Igf2 and H19 in arsenic-exposed males were significantly increased in both F1 and F3. This study indicates that ancestral exposure to arsenic may result in transgenerational inheritance of an impaired spermatogenesis phenotyping involving both epigenetic alterations and the abnormal expression of Igf2 and H19.
Collapse
Affiliation(s)
- Guoying Yin
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Liting Xia
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yaxing Hou
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yaoyan Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Deqing Cao
- Central Laboratory of Preventive Medicine, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yanan Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jingshan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Juan Liu
- Department of Biomedical Information and Library, Tianjin Medical University, Tianjin, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qiaoyun Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Center for International Collaborative Research on Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Garnier R, Mathieu-Huart A, Ronga-Pezeret S, Nouyrigat E, Benoit P, Goullé JP, Granon C, Manel J, Manouchehri N, Nisse P, Normand JC, Roulet A, Simon F, Gabach P, Tournoud C. Exposition de la population française à l’arsenic inorganique. Identification de valeurs toxicologiques de référence. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2020. [DOI: 10.1016/j.toxac.2020.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Huang Q, Liu L, Wu Y, Wang X, Luo L, Nan B, Zhang J, Tian M, Shen H. Seminal plasma metabolites mediate the associations of multiple environmental pollutants with semen quality in Chinese men. ENVIRONMENT INTERNATIONAL 2019; 132:105066. [PMID: 31394396 DOI: 10.1016/j.envint.2019.105066] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/03/2019] [Accepted: 07/28/2019] [Indexed: 05/25/2023]
Abstract
Environmental exposure to arsenic, phthalate esters (PAEs) and perfluorinated compounds (PFCs) has been associated with human semen quality. However, the epidemiological "black-box" of these associations remains poorly uncovered. In this study, based on the association analysis between arsenic, PAE and PFC exposure and semen quality parameters (i.e., semen volume, sperm concentration, sperm count, progressive motility, total motility and normal morphology) in a Chinese male population, we explored the seminal plasma metabolic signatures that may mediate the exposure-outcome relations by using the meet-in-metabolite-analysis (MIMA) approach. As a result, a negative association was found between DMA and sperm concentration, whereas MEHP and PFHxS were positively associated with sperm count and concentration, respectively. Metabolomics analysis revealed that sixteen and twenty-two seminal plasma metabolites were related to sperm concentration and count, respectively, and they are mainly involved in fatty acid, lipid and amino acid metabolism. Moreover, it was further indicated that eicosatetraenoate, carnitines and DHA may impact the inverse association between DMA and sperm concentration, while eicosatetraenoate, carnitines, DHA, PGB2 and tocotrienol are possible mediators of the positive association between PFHxS and sperm concentration. As these metabolic biomarkers are relevant to antioxidation and fatty acid β-oxidation, we suggest that redox balance and energy generation shifts in seminal plasma are involved in the association of human semen quality with environmental DMA and PFHxS exposure.
Collapse
Affiliation(s)
- Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Liangpo Liu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yan Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaofei Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lianzhong Luo
- Xiamen Key Laboratory of Marine Medical Natural Products Resources, Xiamen Medical College, Xiamen 361023, China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
6
|
Oguri T, Yoshinaga J, Suzuki Y, Tao H, Nakazato T. Relation of dietary inorganic arsenic exposure and urinary inorganic arsenic metabolites excretion in Japanese subjects. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:425-429. [PMID: 28272997 DOI: 10.1080/03601234.2017.1293453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Inorganic arsenic (InAs) is a ubiquitous metalloid that has been shown to exert multiple adverse health outcomes. Urinary InAs and its metabolite concentration has been used as a biomarker of arsenic (As) exposure in some epidemiological studies, however, quantitative relationship between daily InAs exposure and urinary InAs metabolites concentration has not been well characterized. We collected a set of 24-h duplicated diet and spot urine sample of the next morning of diet sampling from 20 male and 19 female subjects in Japan from August 2011 to October 2012. Concentrations of As species in duplicated diet and urine samples were determined by using liquid chromatography-ICP mass spectrometry with a hydride generation system. Sum of the concentrations of urinary InAs and methylarsonic acid (MMA) was used as a measure of InAs exposure. Daily dietary InAs exposure was estimated to be 0.087 µg kg-1 day-1 (Geometric mean, GM), and GM of urinary InAs+MMA concentrations was 3.5 ng mL-1. Analysis of covariance did not find gender-difference in regression coefficients as significant (P > 0.05). Regression equation Log 10 [urinary InAs+MMA concentration] = 0.570× Log 10 [dietary InAs exposure level per body weight] + 1.15 was obtained for whole data set. This equation would be valuable in converting urinary InAs concentration to daily InAs exposure, which will be important information in risk assessment.
Collapse
Affiliation(s)
- Tomoko Oguri
- a Department of Environmental Studies , The University of Tokyo , Kashiwa , Chiba , Japan
- b National Institute for Environmental Studies , Tsukuba , Ibaraki , Japan
| | - Jun Yoshinaga
- a Department of Environmental Studies , The University of Tokyo , Kashiwa , Chiba , Japan
| | - Yayoi Suzuki
- a Department of Environmental Studies , The University of Tokyo , Kashiwa , Chiba , Japan
| | - Hiroaki Tao
- c National Institute of Advanced Industrial Science and Technology , Tsukuba , Ibaraki , Japan
| | - Tetsuya Nakazato
- c National Institute of Advanced Industrial Science and Technology , Tsukuba , Ibaraki , Japan
| |
Collapse
|