1
|
Rannaud-Bartaire P, Demeneix BA, Fini JB. Pressures of the urban environment on the endocrine system: Adverse effects and adaptation. Mol Cell Endocrinol 2024; 583:112125. [PMID: 38147952 DOI: 10.1016/j.mce.2023.112125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
With an increasing collective awareness of the rapid environmental changes, questions and theories regarding the adaptability of organisms are emerging. Global warming as well as chemical and non-chemical pollution have been identified as triggers of these adaptative changes, but can we link different kinds of stressors to certain phenotypic traits? The physiological adaptation, and particularly endocrine system adaptation, of living beings to urban environments is a fascinating way of studying urban endocrinology, which has emerged as a research field in 2007. In this paper, we stress how endocrine disruption in humans and environment can be studied in the urban environment by measuring the levels of pollution, endocrine activities or adversity. We broaden the focus to include not only exposure to the chemicals that have invaded our private spheres and their effects on wild and domestic species but also non-chemical effectors such as light, noise and climate change. We argue that taking into account the various urban stress factors and their effects on the endocrine system would enable the adoption of new approaches to protect living organisms.
Collapse
Affiliation(s)
- Patricia Rannaud-Bartaire
- PhyMa Unit, CNRS UMR 7221, Muséum National d'Histoire Naturelle, F-75005, Paris, France; Université Catholique de Lille, l'hôpital Saint-Vincent-De-Paul, Boulevard de Belfort, 59000, Lille, France
| | - Barbara A Demeneix
- PhyMa Unit, CNRS UMR 7221, Muséum National d'Histoire Naturelle, F-75005, Paris, France
| | - Jean-Baptiste Fini
- PhyMa Unit, CNRS UMR 7221, Muséum National d'Histoire Naturelle, F-75005, Paris, France.
| |
Collapse
|
2
|
Khidkhan K, Mizukawa H, Ikenaka Y, Nakayama SMM, Nomiyama K, Yokoyama N, Ichii O, Takiguchi M, Tanabe S, Ishizuka M. Biological effects related to exposure to polychlorinated biphenyl (PCB) and decabromodiphenyl ether (BDE-209) on cats. PLoS One 2023; 18:e0277689. [PMID: 36662783 PMCID: PMC9858064 DOI: 10.1371/journal.pone.0277689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/01/2022] [Indexed: 01/21/2023] Open
Abstract
As an animal familiar to humans, cats are considered to be sensitive to chemicals; cats may be exposed to polychlorinated biphenyls (PCBs) and decabromodiphenyl ether (BDE-209) from indoor dust, household products, and common pet food, leading to adverse endocrine effects, such as thyroid hormone dysfunction. To elucidate the general biological effects resulting from exposure of cats to PCBs and PBDEs, cats were treated with a single i.p. dose of a principal mixture of 12 PCBs and observed for a short-term period. Results revealed that the testis weight, serum albumin, and total protein of the treated group decrease statistically in comparison with those in the control group. The negative correlations suggested that the decrease in the total protein and albumin levels may be disturbed by 4'OH-CB18, 3'OH-CB28 and 3OH-CB101. Meanwhile, the serum albumin level and relative brain weight decreased significantly for cats subjected to 1-year continuous oral administration of BDE-209 in comparison to those of control cats. In addition, the subcutaneous fat as well as serum high-density lipoprotein (HDL) and triglycerides (TG) levels increased in cats treated with BDE-209 and down-regulation of stearoyl-CoA desaturase mRNA expression in the liver occurred. These results suggested that chronic BDE-209 treatment may restrain lipolysis in the liver, which is associated with lipogenesis in the subcutaneous fat. Evidence of liver and kidney cell damage was not observed as there was no significant difference in the liver enzymes, blood urea nitrogen and creatinine levels between the two groups of both experiments. To the best of our knowledge, this is the first study that provides information on the biochemical effects of organohalogen compounds in cats. Further investigations on risk assessment and other potential health effects of PCBs and PBDEs on the reproductive system, brain, and lipid metabolism in cats are required.
Collapse
Affiliation(s)
- Kraisiri Khidkhan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hazuki Mizukawa
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| | - Yoshinori Ikenaka
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Nozomu Yokoyama
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Osamu Ichii
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Mayumi Ishizuka
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
3
|
Contamination Status of Pet Cats in Thailand with Organohalogen Compounds (OHCs) and Their Hydroxylated and Methoxylated Derivatives and Estimation of Sources of Exposure to These Contaminants. Animals (Basel) 2022; 12:ani12243520. [PMID: 36552442 PMCID: PMC9774237 DOI: 10.3390/ani12243520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
In this study, we analyzed serum samples of pet cats from Thailand and estimated the contribution to organohalogen compounds (OHCs) exposure through cat food and house dust intake. BDE-209 was predominant in cat sera and accounted for 76% of all polybrominated diphenyl ethers (PBDEs). Decabromodiphenyl ether (BDE-209) is a major contaminant in dry cat food and house dust, which has been estimated to be a source of exposure for Thai pet cats. BDE-209 is a major contaminant of OHCs in dry cat food and house dust, which was estimated to be a source of exposure for Thai pet cats. On the other hand, the level of contamination by PCBs was lower than in other countries. Analysis of pet foods suggested that BDE-209 in pet cat serum was attributable to the consumption of dry cat food. On the other hand, house dust also contained high concentrations of BDE-209. Thus, high levels of BDE-209 in pet cat sera can be attributed to the consumption of dry cat food and house dust. These results suggest that pet cats are routinely exposed to non-negligible levels of OHCs.
Collapse
|
4
|
de Assis LS, Mills DS. Introducing a Controlled Outdoor Environment Impacts Positively in Cat Welfare and Owner Concerns: The Use of a New Feline Welfare Assessment Tool. Front Vet Sci 2021; 7:599284. [PMID: 33505999 PMCID: PMC7829302 DOI: 10.3389/fvets.2020.599284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/09/2020] [Indexed: 12/03/2022] Open
Abstract
There is much debate over the pros and cons of allowing cats to roam freely as opposed to keeping them confined indoors. We surveyed owners who implemented a commercial physical containment system to the outdoors to evaluate their characteristics and the apparent impact of this system on cat welfare and owner perceptions. As part of the latter aim, we also developed a new feline welfare assessment tool based on the mathematical relationship between different measures. The survey was circulated to customers over the preceding 2 years of ProtectaPet® between May and June 2019 and gathered 446 responses. Univariate analyses compared changes following installation on factors such as the amount of time the cat spent outside, other cats entering the owner's garden and owners' concerns about their cat outside. Principal component analysis was used to reduce 21 potential indicators of feline welfare into fewer variables. This resulted in 4 subscales, 2 relating to positive welfare and 2 relating to negative welfare. The effects of installation of the containment system and significant predictors of these four welfare subscales were assessed. The majority of respondents lived in an urban environment with a relatively small garden, had multiple cats and a history of feline trauma associated with a road traffic accident. As expected, the time spent outside significantly increased, while the frequency of other cats entering the garden and owner concern about leaving their cats outside significantly decreased. The 4 welfare subscales grouped into positivity, maintenance behaviors, health issues and fearfulness; installation of the system was associated with significant improvements across all of these. Time spent outside after installation had a significant effect on positivity and, to a lesser extent, maintenance behaviors. Overall, installation was associated with positive changes in both owner and cat quality of life, which seem to be particularly associated with an increased sense of security. This suggests that housing cats within a controlled outside environment with physical barriers can provide a practical solution for many of the problems associated with cats being allowed out.
Collapse
Affiliation(s)
- Luciana Santos de Assis
- Animal Behaviour Cognition and Welfare Group, School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Daniel Simon Mills
- Animal Behaviour Cognition and Welfare Group, School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
5
|
Bertero A, Rivolta M, Davanzo F, Caloni F. Suspected environmental poisoning by drugs, household products and pesticides in domestic animals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103471. [PMID: 32818631 DOI: 10.1016/j.etap.2020.103471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Animal poisoning by chemicals (pesticides and household products) and drugs is a frequent occurrence and special attention should be paid to this phenomenon to improve prevention and treatment strategies and because of the fundamental role that animals may play as bioindicators. From January 2017 to March 2019 the Poison Control Centre of Milan (CAV) in collaboration with the University of Milan, collected and analyzed epidemiological data on animal poisoning. During this period, the CAV received a total of 442 enquiries on domestic animal poisoning episodes and, among these, 80.3 % were related to chemicals and drugs. Pesticides and drugs were the two major causes of poisoning (34.1 % and 33.5 %, respectively), followed by household products (29.3 %) and other causative agents (3.1 %, n = 11). In conclusion, these findings can provide useful information for the identification and monitoring of known and emerging toxicants, with positive repercussions on human, animal and environmental health.
Collapse
Affiliation(s)
- Alessia Bertero
- Department of Environmental Science and Policy (ESP), Universitàdegli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - Marina Rivolta
- Milan Poison Control Centre, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore 3, 20162 Milan, Italy
| | - Franca Davanzo
- Milan Poison Control Centre, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore 3, 20162 Milan, Italy
| | - Francesca Caloni
- Department of Environmental Science and Policy (ESP), Universitàdegli Studi di Milano, Via Celoria 10, 20133 Milan, Italy.
| |
Collapse
|
6
|
Khidkhan K, Mizukawa H, Ikenaka Y, Nakayama SMM, Nomiyama K, Yokoyama N, Ichii O, Darwish WS, Takiguchi M, Tanabe S, Ishizuka M. Tissue distribution and characterization of feline cytochrome P450 genes related to polychlorinated biphenyl exposure. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108613. [PMID: 31487551 DOI: 10.1016/j.cbpc.2019.108613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 12/23/2022]
Abstract
Cats have been known to be extremely sensitive to chemical exposures. To understand these model species' sensitivity to chemicals and their toxicities, the expression profiles of xenobiotic-metabolizing enzymes should be studied. Unfortunately, the characterization of cytochrome P450 (CYP), the dominant enzyme in phase I metabolism, in cats has not extensively been studied. Polychlorinated biphenyls (PCBs) are known as CYP inducers in animals, but the information regarding the PCB-induced CYP expression in cats is limited. Therefore, in the present study, we aimed to elucidate the mRNA expression of the CYP1-CYP3 families in the cat tissues and to investigate the CYP mRNA expression related to PCB exposure. In cats, the greatest abundance of CYP1-CYP3 (CYP1A2, CYP2A13, CYP2C41, CYP2D6, CYP2E1, CYP2E2, CYP2F2, CYP2F5, CYP2J2, CYP2U1, and CYP3A132) was expressed in the liver, but some extrahepatic isozymes were found in the kidney (CYP1A1), heart (CYP1B1), lung (CYP2B11 and CYP2S1) and small intestine (CYP3A131). In cats, CYP1A1, CYP1A2 and CYP1B1 were significantly upregulated in the liver as well as in several tissues exposed to PCBs, indicating that these CYPs were distinctly induced by PCBs. The strong correlations between 3,3',4,4'-tetrachlorobiphenyl (CB77) and CYP1A1 and CYP1B1 mRNA expressions were noted, demonstrating that CB77 could be a potent CYP1 inducer. In addition, these CYP isoforms could play an essential role in the PCBs biotransformation, particularly 3-4 Cl-PCBs, because a high hydroxylated metabolite level of 3-4 Cl-OH-PCBs was observed in the liver.
Collapse
Affiliation(s)
- Kraisiri Khidkhan
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Hazuki Mizukawa
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime, 790-8577, Japan
| | - Yoshinori Ikenaka
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Shouta M M Nakayama
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Nozomu Yokoyama
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Osamu Ichii
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Wageh Sobhy Darwish
- Department of Health Sciences and Technology, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0818, Japan; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mitsuyoshi Takiguchi
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Mayumi Ishizuka
- Faculty of Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan.
| |
Collapse
|