Kotsia D, Deligianni A, Fyllas NM, Stasinakis AS, Fountoulakis MS. Converting treatment wetlands into "treatment gardens": Use of ornamental plants for greywater treatment.
THE SCIENCE OF THE TOTAL ENVIRONMENT 2020;
744:140889. [PMID:
32711317 DOI:
10.1016/j.scitotenv.2020.140889]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, the use of constructed wetlands for on-site greywater treatment is a very promising option. The successful application of this nature-based solution at full scale requires public acceptance, economic feasibility and the production of high-quality treated greywater. This work focuses on the use of ornamental plants as vertical flow constructed wetland (VFCW) vegetation for greywater treatment, aiming to improve aesthetic and acceptability of the system. The performance and economic feasibility of the proposed green technology were examined during a 2-years study. Results show that Pittosporum tobira and Hedera helix can grow in VFCW operating with greywater without any visible symptoms. These species tolerated both drought and flooding conditions, making them ideal for use not only in residential buildings but also in seasonal hotels and holiday homes. In contrast, partial defoliation of Polygala myrtifolia plants was observed during the winter period. High average removal efficiencies were observed for BOD (99%), COD (96%) and TSS (94%) in all examined VFCWs including unplanted beds. Phosphorus removal gradually decreased from 100% during first months of operation to 15% during second year of operation. In addition, total coliforms concentration reduced by 2.2 log units in the effluent of all planted systems, while lower removal efficiency was observed in the absence of plants. The mean concentration of BOD and TSS in the treated greywater met the standards for indoor reuse (<10 mg/L). Cost payback periods for the installation of the proposed technology in a multi-family building, a single house and a hotel in Greece were found 4.7, 16.6 and 2.5 years, respectively. Overall, the "treatment gardens" proposed in this study provide a technically and economically feasible solution for greywater treatment, with the additional benefit of improving the aesthetic of urban, semi-urban and touristic areas.
Collapse