1
|
Liu Y, Zhu M, Hu Y, Zhao Y, Zhu C. Photochemical reaction of superoxide radicals with 1-naphthol. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The photochemical reactions between 1-naphthol (1-NP) and the superoxide anion radical (O2•–) were investigated in detail by using 365 nm UV irradiation. The results showed that the conversion rate of 1-NP decreased with the increase of the initial concentration of 1-NP, whereas by increasing the pH and riboflavin concentration, the photochemical reaction was accelerated. The second-order reaction rate constant was estimated to be (3.64 ± 0.17) × 108 L mol−1 s−1. The major photolysis products identified by using gas chromatography – mass spectrometry (GC–MS) were 1,4-naphquinone and 2,3-epoxyresin-2,3-dihydro-1,4-naphquinone, and their reaction pathways were also discussed. An atmospheric model showed that both the bulk water reaction and the heterogeneous surface reaction deserve attention in atmospheric aqueous chemistry.
Collapse
Affiliation(s)
- Ying Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei 230009, P.R. China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, P.R. China
| | - Mengyu Zhu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei 230009, P.R. China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, P.R. China
| | - Yadong Hu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei 230009, P.R. China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, P.R. China
| | - Yijun Zhao
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei 230009, P.R. China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, P.R. China
| | - Chengzhu Zhu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, P.R. China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei 230009, P.R. China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, P.R. China
| |
Collapse
|
2
|
DAYAN S. Performance improvement of Co3O4@nHAP hybrid nanomaterial in the UV light-supported degradation of organic pollutants and photovoltaics as counter electrode. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|