1
|
Collins SP, Mailloux B, Kulkarni S, Gagné M, Long AS, Barton-Maclaren TS. Development and application of consensus in silico models for advancing high-throughput toxicological predictions. Front Pharmacol 2024; 15:1307905. [PMID: 38333007 PMCID: PMC10850302 DOI: 10.3389/fphar.2024.1307905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024] Open
Abstract
Computational toxicology models have been successfully implemented to prioritize and screen chemicals. There are numerous in silico (quantitative) structure-activity relationship ([Q]SAR) models for the prediction of a range of human-relevant toxicological endpoints, but for a given endpoint and chemical, not all predictions are identical due to differences in their training sets, algorithms, and methodology. This poses an issue for high-throughput screening of a large chemical inventory as it necessitates several models to cover diverse chemistries but will then generate data conflicts. To address this challenge, we developed a consensus modeling strategy to combine predictions obtained from different existing in silico (Q)SAR models into a single predictive value while also expanding chemical space coverage. This study developed consensus models for nine toxicological endpoints relating to estrogen receptor (ER) and androgen receptor (AR) interactions (i.e., binding, agonism, and antagonism) and genotoxicity (i.e., bacterial mutation, in vitro chromosomal aberration, and in vivo micronucleus). Consensus models were created by combining different (Q)SAR models using various weighting schemes. As a multi-objective optimization problem, there is no single best consensus model, and therefore, Pareto fronts were determined for each endpoint to identify the consensus models that optimize the multiple-criterion decisions simultaneously. Accordingly, this work presents sets of solutions for each endpoint that contain the optimal combination, regardless of the trade-off, with the results demonstrating that the consensus models improved both the predictive power and chemical space coverage. These solutions were further analyzed to find trends between the best consensus models and their components. Here, we demonstrate the development of a flexible and adaptable approach for in silico consensus modeling and its application across nine toxicological endpoints related to ER activity, AR activity, and genotoxicity. These consensus models are developed to be integrated into a larger multi-tier NAM-based framework to prioritize chemicals for further investigation and support the transition to a non-animal approach to risk assessment in Canada.
Collapse
Affiliation(s)
- Sean P. Collins
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | | | | | | | | | | |
Collapse
|
2
|
Vieira L, Souza T, Farias D. The First Steps on AOPs' Concepts, Development, and Applications in Teratology. Methods Mol Biol 2024; 2753:151-157. [PMID: 38285337 DOI: 10.1007/978-1-0716-3625-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
An Adverse Outcome Pathway (AOP) is an analytical model that describes, through a graphical representation, a linear sequence of biologically connected events at different levels of biological organization, causally leading to an adverse effect on human health or the environment. In general, AOPs are constructed based on five central principles: systematic development and review, chemical-agnostic, modular, networks, and living documents. Furthermore, AOPs have the potential to be used, for example, to investigate certain molecular targets; relate the regulation of specific genes or proteins among AOPs; extrapolate biological processes, pathways, or diseases from one species to another; and even predict adverse effects in particular populations. AOPs also emerge as an alternative to animal experimentation in studies of developmental malformations. It's even possible now to develop a quantitative AOP to predict teratogenic effects for some substances. However, the construction of high-quality AOPs requires standardization in the way these models are developed and reviewed, ensuring an adequate degree of flexibility and guaranteeing efficiency. The development of AOPs should strictly be based on the guidance documents developed by the OECD. Nevertheless, an important step for those developing AOPs is the choice of an apical endpoint or an initiating molecular event in order to initiate the construction of the pathway. Another crucial step is a systematic literature review based on the random combination of the blocks of information. With these two fundamental steps completed, it only remains to follow the guidance documents on Developing and Assessing Adverse Outcome Pathways and AOP Developers' Handbook supplement provided by the OECD to organize and construct an AOP. This modern approach will bring radical changes in the field of toxicity testing, regarding the prediction of apical toxic effects using molecular-level effects.
Collapse
Affiliation(s)
- Leonardo Vieira
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
| | - Terezinha Souza
- Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
| | - Davi Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil.
- Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
3
|
Wlodkowic D, Jansen M. High-throughput screening paradigms in ecotoxicity testing: Emerging prospects and ongoing challenges. CHEMOSPHERE 2022; 307:135929. [PMID: 35944679 DOI: 10.1016/j.chemosphere.2022.135929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The rapidly increasing number of new production chemicals coupled with stringent implementation of global chemical management programs necessities a paradigm shift towards boarder uses of low-cost and high-throughput ecotoxicity testing strategies as well as deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity that can be used in effective risk assessment. The latter will require automated acquisition of biological data, new capabilities for big data analysis as well as computational simulations capable of translating new data into in vivo relevance. However, very few efforts have been so far devoted into the development of automated bioanalytical systems in ecotoxicology. This is in stark contrast to standardized and high-throughput chemical screening and prioritization routines found in modern drug discovery pipelines. As a result, the high-throughput and high-content data acquisition in ecotoxicology is still in its infancy with limited examples focused on cell-free and cell-based assays. In this work we outline recent developments and emerging prospects of high-throughput bioanalytical approaches in ecotoxicology that reach beyond in vitro biotests. We discuss future importance of automated quantitative data acquisition for cell-free, cell-based as well as developments in phytotoxicity and in vivo biotests utilizing small aquatic model organisms. We also discuss recent innovations such as organs-on-a-chip technologies and existing challenges for emerging high-throughput ecotoxicity testing strategies. Lastly, we provide seminal examples of the small number of successful high-throughput implementations that have been employed in prioritization of chemicals and accelerated environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC, 3083, Australia.
| | - Marcus Jansen
- LemnaTec GmbH, Nerscheider Weg 170, 52076, Aachen, Germany
| |
Collapse
|
4
|
Wlodkowic D, Czerw A, Karakiewicz B, Deptała A. Recent progress in cytometric technologies and their applications in ecotoxicology and environmental risk assessment. Cytometry A 2021; 101:203-219. [PMID: 34652065 DOI: 10.1002/cyto.a.24508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
Environmental toxicology focuses on identifying and predicting impact of potentially toxic anthropogenic chemicals on biosphere at various levels of biological organization. Presently there is a significant drive to gain deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity. Most notable is increased focus on elucidation of cellular-response networks, interactomes, and greater implementation of cell-based biotests using high-throughput procedures, while at the same time decreasing the reliance on standard animal models used in ecotoxicity testing. This is aimed at discovery and interpretation of molecular pathways of ecotoxicity at large scale. In this regard, the applications of cytometry are perhaps one of the most fundamental prospective analytical tools for the next generation and high-throughput ecotoxicology research. The diversity of this modern technology spans flow, laser-scanning, imaging, and more recently, Raman as well as mass cytometry. The cornerstone advantages of cytometry include the possibility of multi-parameter measurements, gating and rapid analysis. Cytometry overcomes, thus, limitations of traditional bulk techniques such as spectrophotometry or gel-based techniques that average the results from pooled cell populations or small model organisms. Novel technologies such as cell imaging in flow, laser scanning cytometry, as well as mass cytometry provide innovative and tremendously powerful capabilities to analyze cells, tissues as well as to perform in situ analysis of small model organisms. In this review, we outline cytometry as a tremendously diverse field that is still vastly underutilized and often largely unknown in environmental sciences. The main motivation of this work is to highlight the potential and wide-reaching applications of cytometry in ecotoxicology, guide environmental scientists in the technological aspects as well as popularize its broader adoption in environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Aleksandra Czerw
- Department of Health Economics and Medical Law, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Beata Karakiewicz
- Subdepartment of Social Medicine and Public Health, Department of Social Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Deptała
- Department of Cancer Prevention. Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Rim KT. Adverse outcome pathways for chemical toxicity and their applications to workers' health: a literature review. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2020; 12:99-108. [PMID: 32412554 PMCID: PMC7222038 DOI: 10.1007/s13530-020-00053-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/08/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE AND METHODS Various papers related to the application of adverse outcome pathways (AOPs) for the prevention of occupational disease were reviewed. The Internet was used as the primary tool to search for the necessary research data and information, using such online resources as Google Scholar, ScienceDirect, Scopus, NDSL, and PubMed. The key search terms were "adverse outcome pathway," "toxicology," "risk assessment," "human," "worker," "occupational safety and health," and so on. RESULTS AND CONCLUSION The aim of this paper is to explain the use of AOP for the understanding of chemical toxicity as a conceptual means and to predict the toxic mechanism. The tools of AOP have emerged as a forward-looking alternative to the existing chemical risk assessment paradigm. AOP is being applied to the assessment of acute toxicity and to chronic toxic chemicals in the workplace. Not only can it lead to breakthroughs in occupational and environmental cancer prevention, it is also widely used in chemical risk assessment and has led to breakthroughs in the prevention of occupational disease in the workplace.
Collapse
Affiliation(s)
- Kyung-Taek Rim
- Chemicals Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Daejeon, Korea
| |
Collapse
|
6
|
Krewski D, Bird M, Al-Zoughool M, Birkett N, Billard M, Milton B, Rice JM, Grosse Y, Cogliano VJ, Hill MA, Baan RA, Little J, Zielinski JM. Key characteristics of 86 agents known to cause cancer in humans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:244-263. [PMID: 31637961 DOI: 10.1080/10937404.2019.1643536] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Since the inception of the International Agency for Research on Cancer (IARC) in the early 1970s, the IARC Monographs Programme has evaluated more than 1000 agents with respect to carcinogenic hazard; of these, up to and including Volume 119 of the IARC Monographs, 120 agents met the criteria for classification as carcinogenic to humans (Group 1). Volume 100 of the IARC Monographs provided a review and update of Group 1 carcinogens. These agents were divided into six broad categories: (I) pharmaceuticals; (II) biological agents; (III) arsenic, metals, fibers, and dusts; (IV) radiation; (V) personal habits and indoor combustions; and (VI) chemical agents and related occupations. Data on biological mechanisms of action (MOA) were extracted from the Monographs to assemble a database on the basis of ten key characteristics attributed to human carcinogens. After some grouping of similar agents, the characteristic profiles were examined for 86 Group 1 agents for which mechanistic information was available in the IARC Monographs up to and including Volume 106, based upon data derived from human in vivo, human in vitro, animal in vivo, and animal in vitro studies. The most prevalent key characteristic was "is genotoxic", followed by "alters cell proliferation, cell death, or nutrient supply" and "induces oxidative stress". Most agents exhibited several of the ten key characteristics, with an average of four characteristics per agent, a finding consistent with the notion that cancer development in humans involves multiple pathways. Information on the key characteristics was often available from multiple sources, with many agents demonstrating concordance between human and animal sources, particularly with respect to genotoxicity. Although a detailed comparison of the characteristics of different types of agents was not attempted here, the overall characteristic profiles for pharmaceutical agents and for chemical agents and related occupations appeared similar. Further in-depth analyses of this rich database of characteristics of human carcinogens are expected to provide additional insights into the MOA of human cancer development.
Collapse
Affiliation(s)
- Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Risk Sciences International, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Bird
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mustafa Al-Zoughool
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Community and Environmental Health, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Nicholas Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Mélissa Billard
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Jerry M Rice
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Yann Grosse
- IARC Monographs Programme, International Agency for Research on Cancer, Lyon, France
| | - Vincent J Cogliano
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington, DC, USA
| | - Mark A Hill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Robert A Baan
- International Agency for Research on Cancer (retired), Lyon, France
| | - Julian Little
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Jan M Zielinski
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Krivoshiev BV, Beemster GTS, Sprangers K, Cuypers B, Laukens K, Blust R, Husson SJ. Transcriptome profiling of HepG2 cells exposed to the flame retardant 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO). Toxicol Res (Camb) 2018; 7:492-502. [PMID: 30090599 PMCID: PMC6060682 DOI: 10.1039/c8tx00006a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/09/2018] [Indexed: 12/31/2022] Open
Abstract
The flame retardant, 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO), has been receiving great interest given its superior fire protection properties, and its predicted low level of persistence, bioaccumulation, and toxicity. However, empirical toxicological data that are essential for a complete hazard assessment are severely lacking. In this study, we attempted to identify the potential toxicological modes of action by transcriptome (RNA-seq) profiling of the human liver hepatocellular carcinoma cell line, HepG2. Such insight may help in identifying compounds of concern and potential toxicological phenotypes. DOPO was found to have little cytotoxic potential, with lower effective concentrations compared to other flame retardants studied in the same cell line. Differentially expressed genes revealed a wide range of molecular effects including changes in protein, energy, DNA, and lipid metabolism, along with changes in cellular stress response pathways. In response to 250 μM DOPO, the most perturbed biological processes were fatty acid metabolism, androgen metabolism, glucose transport, and renal function and development, which is in agreement with other studies that observed similar effects of other flame retardants in other species. However, treatment with 2.5 μM DOPO resulted in very few differentially expressed genes and failed to indicate any potential effects on biology, despite such concentrations likely being orders of magnitude greater than would be encountered in the environment. This, together with the low levels of cytotoxicity, supports the potential replacement of the current flame retardants by DOPO, although further studies are needed to establish the nephrotoxicity and endocrine disruption of DOPO.
Collapse
Affiliation(s)
- Boris V Krivoshiev
- Department of Biology , Systemic Physiological & Ecotoxicological Research , University of Antwerp , Antwerp , Belgium .
| | - Gerrit T S Beemster
- Department of Biology , Integrated Molecular Plant Physiology Research , University of Antwerp , Antwerp , Belgium
| | - Katrien Sprangers
- Department of Biology , Integrated Molecular Plant Physiology Research , University of Antwerp , Antwerp , Belgium
| | - Bart Cuypers
- Department of Mathematics and Computer Science , Advanced Database Research and Modelling (ADReM) , University of Antwerp , Antwerp , Belgium
- Department of Biomedical Sciences , Unit of Molecular Parasitology , Institute of Tropical Medicine , Antwerp , Belgium
| | - Kris Laukens
- Department of Mathematics and Computer Science , Advanced Database Research and Modelling (ADReM) , University of Antwerp , Antwerp , Belgium
| | - Ronny Blust
- Department of Biology , Systemic Physiological & Ecotoxicological Research , University of Antwerp , Antwerp , Belgium .
| | - Steven J Husson
- Department of Biology , Systemic Physiological & Ecotoxicological Research , University of Antwerp , Antwerp , Belgium .
| |
Collapse
|
8
|
A toxicogenomics approach to screen chlorinated flame retardants tris(2-chloroethyl) phosphate and tris(2-chloroisopropyl) phosphate for potential health effects. J Appl Toxicol 2017; 38:459-470. [DOI: 10.1002/jat.3553] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/26/2022]
|
9
|
Esteves F, Teixeira E, Amorim T, Costa C, Pereira C, Fraga S, De Andrade VM, Teixeira JP, Costa S. Assessment of DNA damage in a group of professional dancers during a 10-month dancing season. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:797-804. [PMID: 28696896 DOI: 10.1080/15287394.2017.1331599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite the numerous health benefits of physical activity, some studies reported that increased intensity and duration may induce oxidative stress in several cellular components including DNA. The aim of this study was to assess the level of basal DNA damage as well as oxidative DNA damage in a group of professional dancers before and after a 10-month dancing season. A group of individuals from general population was also assessed as a control. The alkaline version of the comet assay was the method selected to measure both basal DNA damage and oxidative stress, since this method quantifies both endpoints. In order to measure oxidative stress, the comet assay was coupled with a lesion-specific endonuclease (formamidopyrimidine glycosylase) to detect oxidized purines. The levels of oxidative DNA damage in dancers were significantly increased after the dancing season. Pre-season levels of oxidative DNA damage were lower in dancers than those obtained from the general population, suggesting an adaptation of antioxidant system in dancers. Results of the present biomonitoring study indicate the need for more effective measures to protect ballet dancers from potentially occupational health risks related to regular intensive physical exercise.
Collapse
Affiliation(s)
- Filipa Esteves
- a Environmental Health Department , National Health Institute Dr. Ricardo Jorge , Porto , Portugal
- c EpiUnit-Epidemiology Research Unit , Institute of Public Health (ISPUP), Porto University , Porto , Portugal
| | - Eduardo Teixeira
- b Research Centre in Physical Activity, Health and Leisure, Faculty of Sports , University of Porto (FADEUP) , Porto , Portugal
| | - Tânia Amorim
- b Research Centre in Physical Activity, Health and Leisure, Faculty of Sports , University of Porto (FADEUP) , Porto , Portugal
| | - Carla Costa
- a Environmental Health Department , National Health Institute Dr. Ricardo Jorge , Porto , Portugal
- c EpiUnit-Epidemiology Research Unit , Institute of Public Health (ISPUP), Porto University , Porto , Portugal
| | - Cristiana Pereira
- a Environmental Health Department , National Health Institute Dr. Ricardo Jorge , Porto , Portugal
- c EpiUnit-Epidemiology Research Unit , Institute of Public Health (ISPUP), Porto University , Porto , Portugal
| | - Sónia Fraga
- a Environmental Health Department , National Health Institute Dr. Ricardo Jorge , Porto , Portugal
- c EpiUnit-Epidemiology Research Unit , Institute of Public Health (ISPUP), Porto University , Porto , Portugal
| | - Vanessa Moraes De Andrade
- d Laboratory of Molecular and Cellular Biology Graduate Programme of Health Sciences, Health Sciences Unit , University of Southern Santa Catarina, UNESC , Criciúma , Brazil
| | - João Paulo Teixeira
- a Environmental Health Department , National Health Institute Dr. Ricardo Jorge , Porto , Portugal
- c EpiUnit-Epidemiology Research Unit , Institute of Public Health (ISPUP), Porto University , Porto , Portugal
| | - Solange Costa
- a Environmental Health Department , National Health Institute Dr. Ricardo Jorge , Porto , Portugal
- c EpiUnit-Epidemiology Research Unit , Institute of Public Health (ISPUP), Porto University , Porto , Portugal
| |
Collapse
|
10
|
|
11
|
Pleil JD, Isaacs KK. High-resolution mass spectrometry: basic principles for using exact mass and mass defect for discovery analysis of organic molecules in blood, breath, urine and environmental media. J Breath Res 2016; 10:012001. [DOI: 10.1088/1752-7155/10/1/012001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Hamadache M, Benkortbi O, Hanini S, Amrane A, Khaouane L, Si Moussa C. A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, domain of application and prediction. JOURNAL OF HAZARDOUS MATERIALS 2016; 303:28-40. [PMID: 26513561 DOI: 10.1016/j.jhazmat.2015.09.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
Quantitative Structure Activity Relationship (QSAR) models are expected to play an important role in the risk assessment of chemicals on humans and the environment. In this study, we developed a validated QSAR model to predict acute oral toxicity of 329 pesticides to rats because a few QSAR models have been devoted to predict the Lethal Dose 50 (LD50) of pesticides on rats. This QSAR model is based on 17 molecular descriptors, and is robust, externally predictive and characterized by a good applicability domain. The best results were obtained with a 17/9/1 Artificial Neural Network model trained with the Quasi Newton back propagation (BFGS) algorithm. The prediction accuracy for the external validation set was estimated by the Q(2)ext and the root mean square error (RMS) which are equal to 0.948 and 0.201, respectively. 98.6% of external validation set is correctly predicted and the present model proved to be superior to models previously published. Accordingly, the model developed in this study provides excellent predictions and can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides.
Collapse
Affiliation(s)
- Mabrouk Hamadache
- Laboratoire des Biomatériaux et Phénomènes de Transport (LBMPT), Université de Médéa, Quartier Ain D'heb, 26000 Medea, Algeria.
| | - Othmane Benkortbi
- Laboratoire des Biomatériaux et Phénomènes de Transport (LBMPT), Université de Médéa, Quartier Ain D'heb, 26000 Medea, Algeria.
| | - Salah Hanini
- Laboratoire des Biomatériaux et Phénomènes de Transport (LBMPT), Université de Médéa, Quartier Ain D'heb, 26000 Medea, Algeria.
| | - Abdeltif Amrane
- Ecole Nationale Supérieure de Chimie de Rennes, Université de Rennes 1, CNRS, UMR 6226, 11 allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.
| | - Latifa Khaouane
- Laboratoire des Biomatériaux et Phénomènes de Transport (LBMPT), Université de Médéa, Quartier Ain D'heb, 26000 Medea, Algeria.
| | - Cherif Si Moussa
- Laboratoire des Biomatériaux et Phénomènes de Transport (LBMPT), Université de Médéa, Quartier Ain D'heb, 26000 Medea, Algeria.
| |
Collapse
|
13
|
Hoffmann S, Hartung T, Stephens M. Evidence-Based Toxicology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 856:231-241. [DOI: 10.1007/978-3-319-33826-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Hofmann-Amtenbrink M, Grainger DW, Hofmann H. Nanoparticles in medicine: Current challenges facing inorganic nanoparticle toxicity assessments and standardizations. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1689-94. [PMID: 26051651 DOI: 10.1016/j.nano.2015.05.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/07/2015] [Accepted: 05/14/2015] [Indexed: 11/25/2022]
Abstract
UNLABELLED Although nanoparticles research is ongoing since more than 30years, the development of methods and standard protocols required for their safety and efficacy testing for human use is still in development. The review covers questions on toxicity, safety, risk and legal issues over the lifecycle of inorganic nanoparticles for medical applications. The following topics were covered: (i) In vitro tests may give only a very first indication of possible toxicity as in the actual methods interactions at systemic level are mainly neglected; (ii) the science-driven and the regulation-driven approaches do not really fit for decisive strategies whether or not a nanoparticle should be further developed and may receive a kind of "safety label". (iii) Cost and time of development are the limiting factors for the drug pipeline. Knowing which property of a nanoparticle makes it toxic it may be feasible to re-engineer the particle for higher safety (safety by design). FROM THE CLINICAL EDITOR Testing the safety and efficacy of nanoparticles for human use is still in need of standardization. In this concise review, the author described and discussed the current unresolved issues over the application of inorganic nanoparticles for medical applications.
Collapse
Affiliation(s)
| | - David W Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Heinrich Hofmann
- Ecole Polytechnique Fédérale de Lausanne, Institute of Materials, Powder Technology Laboratory, Station 12, Lausanne, Switzerland.
| |
Collapse
|
15
|
Angrish MM, Madden MC, Pleil JD. Probe molecule (PrM) approach in adverse outcome pathway (AOP) based high-throughput screening (HTS): in vivo discovery for developing in vitro target methods. Chem Res Toxicol 2015; 28:551-9. [PMID: 25692543 DOI: 10.1021/acs.chemrestox.5b00024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Efficient and accurate adverse outcome pathway (AOP) based high-throughput screening (HTS) methods use a systems biology based approach to computationally model in vitro cellular and molecular data for rapid chemical prioritization; however, not all HTS assays are grounded by relevant in vivo exposure data. The challenge is to develop HTS assays with unambiguous quantitative links between in vitro responses and corresponding in vivo effects, which is complicated by metabolically insufficient systems, in vitro to in vivo extrapolation (IVIVE), cross-species comparisons, and other inherent issues correlating IVIVE findings. This article introduces the concept of ultrasensitive gas phase probe molecules (PrMs) to help bridge the current HTS assay IVIVE gap. The PrM concept assesses metabolic pathways that have already been well-defined from intact human or mammalian models. Specifically, the idea is to introduce a gas phase probe molecule into a system, observe normal steady state, add chemicals of interest, and quantitatively measure (from headspace gas) effects on PrM metabolism that can be directly linked back to a well-defined and corresponding in vivo effect. As an example, we developed the pharmacokinetic (PK) parameters and differential equations to estimate methyl tertiary butyl ether (MTBE) metabolism to tertiary butyl alcohol (TBA) via cytochrome (CYP) 2A6 in the liver from human empirical data. Because MTBE metabolic pathways are well characterized from in vivo data, we can use it as a PrM to explore direct and indirect chemical effects on CYP pathways. The PrM concept could be easily applied to in vitro and alternative models of disease and phenotype, and even test for volatile chemicals while avoiding liquid handling robotics. Furthermore, a PrM can be designed for any chemical with known empirical human exposure data and used to assess chemicals for which no information exists. Herein, we propose an elegant gas phase probe molecule-based approach to in vitro toxicity testing.
Collapse
Affiliation(s)
- Michelle M Angrish
- †ORISE Participant, US EPA, Research Triangle Park, North Carolina 27711, United States
| | - Michael C Madden
- ‡Environmental Public Health Division, NHEERL/ORD, US EPA, Chapel Hill, North Carolina 27599, United States
| | - Joachim D Pleil
- §Human Exposure and Atmospheric Sciences Division, NERL/ORD, US EPA, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
16
|
Xu Y, Duncan FE, Xu M, Woodruff TK. Use of an organotypic mammalian in vitro follicle growth assay to facilitate female reproductive toxicity screening. Reprod Fertil Dev 2015; 28:RD14375. [PMID: 25689754 PMCID: PMC4540697 DOI: 10.1071/rd14375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 01/09/2015] [Indexed: 11/23/2022] Open
Abstract
Screening of pharmaceutical, chemical and environmental compounds for their effects on reproductive health relies on in vivo studies. More robust and efficient methods to assess these effects are needed. Herein we adapted and validated an organotypic in vitro follicle growth (IVFG) assay to determine the impact of compounds on markers of ovarian function. We isolated mammalian follicles and cultured them in the presence of compounds with: (1) known fertotoxicity (i.e. toxicity to the reproductive system; cyclophosphamide and cisplatin); (2) no known fertotoxicity (nalbuphine); and (3) unknown fertotoxicity (Corexit EC 9500 A; CE, Nalco, Chicago, IL, USA). For each compound, we assayed follicle growth, hormone production and the ability of follicle-enclosed oocytes to resume meiosis and produce a mature egg. Cyclophosphamide and cisplatin caused dose-dependent disruption of follicle dynamics, whereas nalbuphine did not. The reproductive toxicity of CE, an oil dispersant used heavily during the 2010 Deepwater Horizon oil spill, has never been examined in a mammalian system. In the present study, CE compromised follicle morphology and functional parameters. Our findings demonstrate that this IVFG assay system can be used to distinguish fertotoxic from non-toxic compounds, providing an in vitro tool to assess the effects of chemical compounds on reproductive function and health.
Collapse
Affiliation(s)
- Yuanming Xu
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
- Center for Reproductive Science, Northwestern University, Evanston, IL USA
| | - Min Xu
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Teresa K. Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
- Center for Reproductive Science, Northwestern University, Evanston, IL USA
| |
Collapse
|
17
|
Krewski D, Westphal M, Andersen ME, Paoli GM, Chiu WA, Al-Zoughool M, Croteau MC, Burgoon LD, Cote I. A framework for the next generation of risk science. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:796-805. [PMID: 24727499 PMCID: PMC4123023 DOI: 10.1289/ehp.1307260] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 04/09/2014] [Indexed: 05/19/2023]
Abstract
OBJECTIVES In 2011, the U.S. Environmental Protection Agency initiated the NexGen project to develop a new paradigm for the next generation of risk science. METHODS The NexGen framework was built on three cornerstones: the availability of new data on toxicity pathways made possible by fundamental advances in basic biology and toxicological science, the incorporation of a population health perspective that recognizes that most adverse health outcomes involve multiple determinants, and a renewed focus on new risk assessment methodologies designed to better inform risk management decision making. RESULTS The NexGen framework has three phases. Phase I (objectives) focuses on problem formulation and scoping, taking into account the risk context and the range of available risk management decision-making options. Phase II (risk assessment) seeks to identify critical toxicity pathway perturbations using new toxicity testing tools and technologies, and to better characterize risks and uncertainties using advanced risk assessment methodologies. Phase III (risk management) involves the development of evidence-based population health risk management strategies of a regulatory, economic, advisory, community-based, or technological nature, using sound principles of risk management decision making. CONCLUSIONS Analysis of a series of case study prototypes indicated that many aspects of the NexGen framework are already beginning to be adopted in practice.
Collapse
Affiliation(s)
- Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wink S, Hiemstra S, Huppelschoten S, Danen E, Niemeijer M, Hendriks G, Vrieling H, Herpers B, van de Water B. Quantitative high content imaging of cellular adaptive stress response pathways in toxicity for chemical safety assessment. Chem Res Toxicol 2014; 27:338-55. [PMID: 24450961 DOI: 10.1021/tx4004038] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Over the past decade, major leaps forward have been made on the mechanistic understanding and identification of adaptive stress response landscapes underlying toxic insult using transcriptomics approaches. However, for predictive purposes of adverse outcome several major limitations in these approaches exist. First, the limited number of samples that can be analyzed reduces the in depth analysis of concentration-time course relationships for toxic stress responses. Second these transcriptomics analysis have been based on the whole cell population, thereby inevitably preventing single cell analysis. Third, transcriptomics is based on the transcript level, totally ignoring (post)translational regulation. We believe these limitations are circumvented with the application of high content analysis of relevant toxicant-induced adaptive stress signaling pathways using bacterial artificial chromosome (BAC) green fluorescent protein (GFP) reporter cell-based assays. The goal is to establish a platform that incorporates all adaptive stress pathways that are relevant for toxicity, with a focus on drug-induced liver injury. In addition, cellular stress responses typically follow cell perturbations at the subcellular organelle level. Therefore, we complement our reporter line panel with reporters for specific organelle morphometry and function. Here, we review the approaches of high content imaging of cellular adaptive stress responses to chemicals and the application in the mechanistic understanding and prediction of chemical toxicity at a systems toxicology level.
Collapse
Affiliation(s)
- Steven Wink
- Division of Toxicology, Leiden Academic Centre for Drug Research (LACDR), Leiden University , The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hodgson E, Wallace AD, Shah RR, Choi K, Joo H. Human Variation and Risk Assessment: Microarray and Other Studies Utilizing Human Hepatocytes and Human Liver Subcellular Preparations. J Biochem Mol Toxicol 2013; 28:1-10. [DOI: 10.1002/jbt.21534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Ernest Hodgson
- North Carolina Agromedicine Institute and Toxicology Program; Department of Applied Ecology; North Carolina State University; Raleigh NC
| | - Andrew D. Wallace
- Department of Environmental and Molecular Toxicology; North Carolina State University; Raleigh NC
| | | | - Kyoungju Choi
- Department of Environmental and Molecular Toxicology; North Carolina State University; Raleigh NC
| | - Hyun Joo
- Department of Environmental and Molecular Toxicology; North Carolina State University; Raleigh NC
| |
Collapse
|
20
|
Nendza M, Gabbert S, Kühne R, Lombardo A, Roncaglioni A, Benfenati E, Benigni R, Bossa C, Strempel S, Scheringer M, Fernández A, Rallo R, Giralt F, Dimitrov S, Mekenyan O, Bringezu F, Schüürmann G. A comparative survey of chemistry-driven in silico methods to identify hazardous substances under REACH. Regul Toxicol Pharmacol 2013; 66:301-14. [DOI: 10.1016/j.yrtph.2013.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 05/09/2013] [Accepted: 05/11/2013] [Indexed: 11/29/2022]
|
21
|
Lapenna S, Gabbert S, Worth A. Training needs for toxicity testing in the 21st century: a survey-informed analysis. Altern Lab Anim 2013; 40:313-20. [PMID: 23398336 DOI: 10.1177/026119291204000604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Current training needs on the use of alternative methods in predictive toxicology, including new approaches based on mode-of-action (MoA) and adverse outcome pathway (AOP) concepts, are expected to evolve rapidly. In order to gain insight into stakeholder preferences for training, the European Commission's Joint Research Centre (JRC) conducted a single-question survey with twelve experts in regulatory agencies, industry, national research organisations, NGOs and consultancies. Stakeholder responses were evaluated by means of theory-based qualitative data analysis. Overall, a set of training topics were identified that relate both to general background information and to guidance for applying alternative testing methods. In particular, for the use of in silico methods, stakeholders emphasised the need for training on data integration and evaluation, in order to increase confidence in applying these methods for regulatory purposes. Although the survey does not claim to offer an exhaustive overview of the training requirements, its findings support the conclusion that the development of well-targeted and tailor-made training opportunities that inform about the usefulness of alternative methods, in particular those that offer practical experience in the application of in silico methods, deserves more attention. This should be complemented by transparent information and guidance on the interpretation of the results generated by these methods and software tools.
Collapse
Affiliation(s)
- Silvia Lapenna
- Systems Toxicology Unit, Institute for Health and Consumer Protection, Joint Research Centre, European Commission, Ispra, Varese, Italy
| | | | | |
Collapse
|
22
|
Baumgartner A. Comparative genomic hybridization (CGH) in genotoxicology. Methods Mol Biol 2013; 1044:245-268. [PMID: 23896881 DOI: 10.1007/978-1-62703-529-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the past two decades comparative genomic hybridization (CGH) and array CGH have become crucial and indispensable tools in clinical diagnostics. Initially developed for the genome-wide screening of chromosomal imbalances in tumor cells, CGH as well as array CGH have also been employed in genotoxicology and most recently in toxicogenomics. The latter methodology allows a multi-endpoint analysis of how genes and proteins react to toxic agents revealing molecular mechanisms of toxicology. This chapter provides a background on the use of CGH and array CGH in the context of genotoxicology as well as a protocol for conventional CGH to understand the basic principles of CGH. Array CGH is still cost intensive and requires suitable analytical algorithms but might become the dominating assay in the future when more companies provide a large variety of different commercial DNA arrays/chips leading to lower costs for array CGH equipment as well as consumables such as DNA chips. As the amount of data generated with microarrays exponentially grows, the demand for powerful adaptive algorithms for analysis, competent databases, as well as a sound regulatory framework will also increase. Nevertheless, chromosomal and array CGH are being demonstrated to be effective tools for investigating copy number changes/variations in the whole genome, DNA expression patterns, as well as loss of heterozygosity after a genotoxic impact. This will lead to new insights into affected genes and the underlying structures of regulatory and signaling pathways in genotoxicology and could conclusively identify yet unknown harmful toxicants.
Collapse
|
23
|
Pleil JD, Sobus JR. Estimating lifetime risk from spot biomarker data and intraclass correlation coefficients (ICC). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:747-66. [PMID: 23980840 DOI: 10.1080/15287394.2013.821394] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Human biomarker measurements in tissues including blood, breath, and urine can serve as efficient surrogates for environmental monitoring because a single biological sample integrates personal exposure across all environmental media and uptake pathways. However, biomarkers represent a "snapshot" in time, and risk assessment is generally based on long-term averages. In this study, a statistical approach is proposed for estimating long-term average exposures from distributions of spot biomarker measurements using intraclass correlations based upon measurement variance components from the literature. This methodology was developed and demonstrated using a log-normally distributed data set of urinary OH-pyrene taken from our own studies. The calculations are generalized for any biomarker data set of spot measures such as those from the National Health and Nutrition Evaluation Studies (NHANES) requiring only spreadsheet calculations. A three-tiered approach depending on the availability of metadata was developed for converting any collection of spot biomarkers into an estimated distribution of individual means that can then be compared to a biologically relevant risk level. Examples from a Microsoft Excel-based spreadsheet for calculating estimates of the proportion of the population exceeding a given biomonitoring equivalent level are provided as an appendix.
Collapse
Affiliation(s)
- Joachim D Pleil
- Human Exposure and Atmospheric Sciences Division, NERL/ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | |
Collapse
|
24
|
Abstract
Developmental toxicity may be estimated using commercial and noncommercial software that is already available in the market and/or literature, or models may be built from scratch using both commercial and noncommercial software packages. In this chapter, commonly available software programs that can predict the developmental toxicity of chemicals are described. In addition, a method for developing qualitative structure-activity relationship (SAR) models to predict the developmental toxicity of chemicals qualitatively (yes/no prediction) and quantitative structure-activity relationship (QSAR) models to predict quantitative estimates (e.g., LOAEL) of developmental toxicants is also described in this chapter. Additional information described in this chapter include methods to predict physicochemical properties of chemicals that can be used as descriptor variables in the model building process, statistical methods that be used to build QSAR models as well as methods to validate the models that are developed. Most of the methods described in this chapter can be used to develop models for health endpoints other than developmental toxicity as well.
Collapse
|
25
|
Pleil JD, Williams MA, Sobus JR. Chemical Safety for Sustainability (CSS): Human in vivo biomonitoring data for complementing results from in vitro toxicology—A commentary. Toxicol Lett 2012; 215:201-7. [DOI: 10.1016/j.toxlet.2012.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/14/2012] [Accepted: 10/15/2012] [Indexed: 01/12/2023]
|
26
|
Abstract
Toxicology is and will be heavily influenced by advances in many scientific disciplines. For toxicologic pathology, particularly relevant are the increasing array of molecular methods providing deeper insights into toxicity pathways, in vivo imaging techniques visualizing toxicodynamics and more powerful computers anticipated to allow (partly) automated morphological diagnoses. It appears unlikely that, in a foreseeable future, animal studies can be replaced by in silico and in vitro studies or longer term in vivo studies by investigations of biomarkers including toxicogenomics of shorter term studies, though the importance of such approaches will continue to increase. In addition to changes based on scientific progress, the work of toxicopathologists is and will be affected by social and financial factors, among them stagnating budgets, globalization, and outsourcing. The number of toxicopathologists in North America, Europe, and the Far East is not expected to grow. Many toxicopathologists will likely spend less time at the microscope but will be more heavily involved in early research activities, imaging, and as generalists with a broad biological understanding in evaluation and management of toxicity. Toxicologic pathology will remain important and is indispensable for validation of new methods, quality assurance of established methods, and for areas without good alternative methods.
Collapse
|
27
|
Cunningham AR, Carrasquer CA, Qamar S, Maguire JM, Cunningham SL, Trent JO. Global structure-activity relationship model for nonmutagenic carcinogens using virtual ligand-protein interactions as model descriptors. Carcinogenesis 2012; 33:1940-5. [PMID: 22678118 PMCID: PMC3463155 DOI: 10.1093/carcin/bgs197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 05/16/2012] [Accepted: 05/26/2012] [Indexed: 11/13/2022] Open
Abstract
Structure-activity relationship (SAR) models are powerful tools to investigate the mechanisms of action of chemical carcinogens and to predict the potential carcinogenicity of untested compounds. We describe the use of a traditional fragment-based SAR approach along with a new virtual ligand-protein interaction-based approach for modeling of nonmutagenic carcinogens. The ligand-based SAR models used descriptors derived from computationally calculated ligand-binding affinities for learning set agents to 5495 proteins. Two learning sets were developed. One set was from the Carcinogenic Potency Database, where chemicals tested for rat carcinogenesis along with Salmonella mutagenicity data were provided. The second was from Malacarne et al. who developed a learning set of nonalerting compounds based on rodent cancer bioassay data and Ashby's structural alerts. When the rat cancer models were categorized based on mutagenicity, the traditional fragment model outperformed the ligand-based model. However, when the learning sets were composed solely of nonmutagenic or nonalerting carcinogens and noncarcinogens, the fragment model demonstrated a concordance of near 50%, whereas the ligand-based models demonstrated a concordance of 71% for nonmutagenic carcinogens and 74% for nonalerting carcinogens. Overall, these findings suggest that expert system analysis of virtual chemical protein interactions may be useful for developing predictive SAR models for nonmutagenic carcinogens. Moreover, a more practical approach for developing SAR models for carcinogenesis may include fragment-based models for chemicals testing positive for mutagenicity and ligand-based models for chemicals devoid of DNA reactivity.
Collapse
Affiliation(s)
- Albert R. Cunningham
- James Graham Brown Cancer Center, University of Louisville505 South Hancock Street,Louisville, KY 40202, USA,
- Department of Medicine, University of LouisvilleLouisville, KY 40292, USA,
- Department of Pharmacology and Toxicology, University of Louisville500 South Preston Street,Louisville, KY 40202, USA and
- Gnarus Systems, Inc.,201 E. Jefferson Street, Suite 125, Louisville, KY 40202, USA
| | - C. Alex Carrasquer
- James Graham Brown Cancer Center, University of Louisville505 South Hancock Street,Louisville, KY 40202, USA,
| | - Shahid Qamar
- James Graham Brown Cancer Center, University of Louisville505 South Hancock Street,Louisville, KY 40202, USA,
| | - Jon M. Maguire
- James Graham Brown Cancer Center, University of Louisville505 South Hancock Street,Louisville, KY 40202, USA,
| | | | - John O. Trent
- James Graham Brown Cancer Center, University of Louisville505 South Hancock Street,Louisville, KY 40202, USA,
- Department of Medicine, University of LouisvilleLouisville, KY 40292, USA,
| |
Collapse
|
28
|
Moggs J, Moulin P, Pognan F, Brees D, Leonard M, Busch S, Cordier A, Heard DJ, Kammüller M, Merz M, Bouchard P, Chibout SD. Investigative safety science as a competitive advantage for Pharma. Expert Opin Drug Metab Toxicol 2012; 8:1071-82. [DOI: 10.1517/17425255.2012.693914] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Can we discover pharmacological promiscuity early in the drug discovery process? Drug Discov Today 2012; 17:325-35. [DOI: 10.1016/j.drudis.2012.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/26/2011] [Accepted: 01/09/2012] [Indexed: 11/22/2022]
|
30
|
Lin Z, Will Y. Evaluation of Drugs With Specific Organ Toxicities in Organ-Specific Cell Lines. Toxicol Sci 2011; 126:114-27. [DOI: 10.1093/toxsci/kfr339] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Bhattacharya S, Zhang Q, Carmichael PL, Boekelheide K, Andersen ME. Toxicity testing in the 21 century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways. PLoS One 2011; 6:e20887. [PMID: 21701582 PMCID: PMC3118802 DOI: 10.1371/journal.pone.0020887] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 05/11/2011] [Indexed: 01/15/2023] Open
Abstract
The approaches to quantitatively assessing the health risks of chemical exposure have not changed appreciably in the past 50 to 80 years, the focus remaining on high-dose studies that measure adverse outcomes in homogeneous animal populations. This expensive, low-throughput approach relies on conservative extrapolations to relate animal studies to much lower-dose human exposures and is of questionable relevance to predicting risks to humans at their typical low exposures. It makes little use of a mechanistic understanding of the mode of action by which chemicals perturb biological processes in human cells and tissues. An alternative vision, proposed by the U.S. National Research Council (NRC) report Toxicity Testing in the 21(st) Century: A Vision and a Strategy, called for moving away from traditional high-dose animal studies to an approach based on perturbation of cellular responses using well-designed in vitro assays. Central to this vision are (a) "toxicity pathways" (the innate cellular pathways that may be perturbed by chemicals) and (b) the determination of chemical concentration ranges where those perturbations are likely to be excessive, thereby leading to adverse health effects if present for a prolonged duration in an intact organism. In this paper we briefly review the original NRC report and responses to that report over the past 3 years, and discuss how the change in testing might be achieved in the U.S. and in the European Union (EU). EU initiatives in developing alternatives to animal testing of cosmetic ingredients have run very much in parallel with the NRC report. Moving from current practice to the NRC vision would require using prototype toxicity pathways to develop case studies showing the new vision in action. In this vein, we also discuss how the proposed strategy for toxicity testing might be applied to the toxicity pathways associated with DNA damage and repair.
Collapse
Affiliation(s)
- Sudin Bhattacharya
- Program in Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Qiang Zhang
- Program in Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Paul L. Carmichael
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedford, United Kingdom
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Melvin E. Andersen
- Program in Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
32
|
Krewski D, Westphal M, Al-Zoughool M, Croteau MC, Andersen ME. New Directions in Toxicity Testing. Annu Rev Public Health 2011; 32:161-78. [DOI: 10.1146/annurev-publhealth-031210-101153] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel Krewski
- McLaughlin Center for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5; , , ,
| | - Margit Westphal
- McLaughlin Center for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5; , , ,
| | - Mustafa Al-Zoughool
- McLaughlin Center for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5; , , ,
| | - Maxine C. Croteau
- McLaughlin Center for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5; , , ,
| | - Melvin E. Andersen
- Program in Chemical Safety Sciences, Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, USA;
| |
Collapse
|
33
|
Mossman BT, Lippmann M, Hesterberg TW, Kelsey KT, Barchowsky A, Bonner JC. Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:76-121. [PMID: 21534086 PMCID: PMC3118517 DOI: 10.1080/10937404.2011.556047] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Lung carcinomas and pulmonary fibrosis (asbestosis) occur in asbestos workers. Understanding the pathogenesis of these diseases is complicated because of potential confounding factors, such as smoking, which is not a risk factor in mesothelioma. The modes of action (MOA) of various types of asbestos in the development of lung cancers, asbestosis, and mesotheliomas appear to be different. Moreover, asbestos fibers may act differentially at various stages of these diseases, and have different potencies as compared to other naturally occurring and synthetic fibers. This literature review describes patterns of deposition and retention of various types of asbestos and other fibers after inhalation, methods of translocation within the lung, and dissolution of various fiber types in lung compartments and cells in vitro. Comprehensive dose-response studies at fiber concentrations inhaled by humans as well as bivariate size distributions (lengths and widths), types, and sources of fibers are rarely defined in published studies and are needed. Species-specific responses may occur. Mechanistic studies have some of these limitations, but have suggested that changes in gene expression (either fiber-catalyzed directly or by cell elaboration of oxidants), epigenetic changes, and receptor-mediated or other intracellular signaling cascades may play roles in various stages of the development of lung cancers or asbestosis.
Collapse
Affiliation(s)
- Brooke T Mossman
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont 05405, USA.
| | | | | | | | | | | |
Collapse
|