1
|
Pająk P, Socha R, Królikowska K, Grzyb J, Hetmańczyk J, Zachariasz P. Characterization of octenyl succinylated potato-starch based films enriched with extracts from various honey-bee products. Int J Biol Macromol 2024; 285:138293. [PMID: 39643200 DOI: 10.1016/j.ijbiomac.2024.138293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The study developed octenyl succinylated (OS) potato starch complexes with ethanolic extracts of honey bee products (HBE) and assess their effects on starch-based films properties. X-ray diffraction and thermogravimetric analysis showed that OS starch films had lower crystallinity and higher thermal stability than native ones. Adding HBE enhanced V-type ordering in OS films. Starch esterification raised the water contact angle (WCA) from 52.9° to 62.3°, with hydrophobicity improvements when HBE was added (WCA >78.9°). OS starch-HBE complexes increased the antioxidant properties compared to non-modified starch films, in the order: propolis > bee bread > bee pollen > buckwheat honey > multiflower honey. The sum of individual phenolic compounds (IPC) in OS starch films was significantly higher compared to native counterparts, showing increases of 35 %, 83 % and 20 % for films with bee pollen, bee bread, and propolis, respectively. The latter film exhibited the highest IPC, totaling 2204.4 mg/100 g. While OS starch did not affect the antimicrobial properties of the films, the incorporation of HBE significantly improved their ability to bacterial inhibition, with propolis showing the strongest effect. Despite reduced optical and sensory properties of OS films, OS starch complexes with bee bread and propolis show great potential for food packaging.
Collapse
Affiliation(s)
- Paulina Pająk
- Department of Food Analysis and Evaluation of Food Quality, Faculty of Food Technology, University of Agriculture Balicka Str. 122, 30-149 Krakow, Poland.
| | - Robert Socha
- Department of Food Analysis and Evaluation of Food Quality, Faculty of Food Technology, University of Agriculture Balicka Str. 122, 30-149 Krakow, Poland.
| | - Karolina Królikowska
- Department of Food Analysis and Evaluation of Food Quality, Faculty of Food Technology, University of Agriculture Balicka Str. 122, 30-149 Krakow, Poland.
| | - Jacek Grzyb
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture Balicka Str. 122, 30-149 Krakow, Poland.
| | - Joanna Hetmańczyk
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa Str. 2, 30-387 Krakow, Poland.
| | - Piotr Zachariasz
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, Research Group: LTCC Technology, Zabłocie 39 St., 30-701 Krakow, Poland.
| |
Collapse
|
2
|
Bodie AR, Wythe LA, Dittoe DK, Rothrock MJ, O’Bryan CA, Ricke SC. Alternative Additives for Organic and Natural Ready-to-Eat Meats to Control Spoilage and Maintain Shelf Life: Current Perspectives in the United States. Foods 2024; 13:464. [PMID: 38338599 PMCID: PMC10855140 DOI: 10.3390/foods13030464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Food additives are employed in the food industry to enhance the color, smell, and taste of foods, increase nutritional value, boost processing efficiency, and extend shelf life. Consumers are beginning to prioritize food ingredients that they perceive as supporting a healthy lifestyle, emphasizing ingredients they deem acceptable as alternative or "clean-label" ingredients. Ready-to-eat (RTE) meat products can be contaminated with pathogens and spoilage microorganisms after the cooking step, contributing to food spoilage losses and increasing the risk to consumers for foodborne illnesses. More recently, consumers have advocated for no artificial additives or preservatives, which has led to a search for antimicrobials that meet these demands but do not lessen the safety or quality of RTE meats. Lactates and diacetates are used almost universally to extend the shelf life of RTE meats by reducing spoilage organisms and preventing the outgrowth of the foodborne pathogen Listeria monocytogenes. These antimicrobials applied to RTE meats tend to be broad-spectrum in their activities, thus affecting overall microbial ecology. It is to the food processing industry's advantage to target spoilage organisms and pathogens specifically.
Collapse
Affiliation(s)
- Aaron R. Bodie
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53705, USA; (A.R.B.); (L.A.W.)
| | - Lindsey A. Wythe
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53705, USA; (A.R.B.); (L.A.W.)
| | - Dana K. Dittoe
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
| | - Michael J. Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture-Agriculture Research Service (USDA-ARS), Athens, GA 30605, USA;
| | - Corliss A. O’Bryan
- Department of Food Science, University of Arkansas-Fayetteville, Fayetteville, AR 72701, USA;
| | - Steven C. Ricke
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53705, USA; (A.R.B.); (L.A.W.)
| |
Collapse
|
3
|
Rozman AS, Hashim N, Maringgal B, Abdan K, Sabarudin A. Recent advances in active agent-filled wrapping film for preserving and enhancing the quality of fresh produce. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Amorim LFA, Fangueiro R, Gouveia IC. Novel functional material incorporating flexirubin‐type pigment in polyvinyl alcohol_kefiran/polycaprolactone nanofibers. J Appl Polym Sci 2022. [DOI: 10.1002/app.53208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lúcia F. A. Amorim
- FibEnTech Research Unit Faculty of Engineering University of Beira Interior Covilhã Portugal
| | - Raul Fangueiro
- Centre for Textile Science and Technology (2C2T) University of Minho Guimarães Portugal
| | - Isabel C. Gouveia
- FibEnTech Research Unit Faculty of Engineering University of Beira Interior Covilhã Portugal
| |
Collapse
|
5
|
Abstract
In 2018, the worldwide consumption of meat was 346.14 million tonnes, and this is expected to increase in the future. As meat consumption increases, the use of packaging materials is expected to increase along with it. Petrochemical packaging materials which are widely used in the meat processing industry, take a long time to regenerate and biodegrade, thus they adversely affect the environment. Therefore, the necessity for the development of eco-friendly packaging materials for meat processing, which are easily degradable and recyclable, came to the fore. The objective of this review is to describe the application of natural compound-derived edible films with their antioxidant and antibacterial activities in meat and meat products. For several decades, polysaccharides (cellulose, starch, pectin, gum, alginate, carrageenan and chitosan), proteins (milk, collagen and isolated soy protein) and lipids (essential oil, waxes, emulsifiers, plasticizers and resins) were studied as basic materials for edible films to reduce plastic packaging. There are still high consumer demands for eco-friendly alternatives to petrochemical-based plastic packaging, and edible films can be used in a variety of ways in meat processing. More efforts to enhance the physiological and functional properties of edible films are needed for commercial application to meat and meat products.
Collapse
|
6
|
Extending Shelf-Life and Quality of Minimally Processed Golden Delicious Apples with Three Bioactive Coatings Combined with Cinnamon Essential Oil. Foods 2021; 10:foods10030597. [PMID: 33809024 PMCID: PMC7998788 DOI: 10.3390/foods10030597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022] Open
Abstract
The application of coatings with essential oils for food preservation is an alternative way to keep minimally processed apple slices fresh, nutritious, safe, sensory palatable, and accessible for consumers. In the present study, the effect of three bioactive coatings on quality variables of minimally processed Golden Delicious apple slices for 25-days at 4 °C was evaluated. The coatings were CT1-chitosan-based, CT2-guar gum-based, and CT3-composite guar gum-starch-based; all three coatings contained cinnamon essential oil and were compared with UCT0-uncoated apple slices. The quality variables evaluated were weight-loss, firmness, browning index, total phenolic content, total soluble solids, titratable acidity, respiration rate, microbial analysis, and sensory evaluation. All coatings improved the preservation and sensorial quality variables of Golden Delicious apples; however, although the CT1-chitosan-based coating was capable of extending the shelf-life of minimally processed apple, it demonstrated less sensorially favorable scores for flavor, odor, and overall acceptance attributes.
Collapse
|
7
|
Ming Y, Chen L, Khan A, Wang H, Wang C. Effects of tea polyphenols on physicochemical and antioxidative properties of whey protein coating. Food Sci Biotechnol 2020; 29:1655-1663. [PMID: 33282432 DOI: 10.1007/s10068-020-00824-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/25/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022] Open
Abstract
Effects of tea polyphenols (TP) incorporation on physicochemical and antioxidative properties of whey protein isolate (WPI) coating were studied. Two WPI coating solutions were prepared by heating WPI solutions (pH 8, 90 °C) for 30 min and then TP was incorporated. TP addition could increase the negative zeta potential of 5% solution. The surface hydrophobicity index of both solutions was increased and intrinsic fluorescence intensity decreased greatly after addition of TP. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis (2 ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging capacities of both solutions increased with increasing TP. Compared with apple pieces coated with whey protein only, those with TP containing whey protein coatings showed lower browning index and slight changes in weight loss during 24 h storage. Data indicated that TP could influence the physicochemical properties and improve the antioxidant activity of WPI coating solutions and can be used to retard the enzymatic browning of fruit during storage.
Collapse
Affiliation(s)
- Yao Ming
- Department of Food Science, College of Food Science and Engineering, Jilin University, Xi'an Road 5333#, Changchun, 130062 Jilin China
| | - Lu Chen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Xi'an Road 5333#, Changchun, 130062 Jilin China
| | - Abbas Khan
- Department of Food Science, College of Food Science and Engineering, Jilin University, Xi'an Road 5333#, Changchun, 130062 Jilin China
| | - Hao Wang
- Department of Food Science, Northeast Agriculture University, Harbin, 150001 Heilongjiang China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Xi'an Road 5333#, Changchun, 130062 Jilin China
| |
Collapse
|
8
|
Starowicz M, Piskuła M, Achrem–Achremowicz B, Zieliński H. Phenolic Compounds from Apples: Reviewing their Occurrence, Absorption, Bioavailability, Processing, and Antioxidant Activity – a Review. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/127635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
9
|
Sahraee S, Milani JM, Regenstein JM, Kafil HS. Protection of foods against oxidative deterioration using edible films and coatings: A review. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.100451] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Thakur R, Pristijono P, Scarlett CJ, Bowyer M, Singh S, Vuong QV. Starch-based edible coating formulation: Optimization and its application to improve the postharvest quality of “Cripps pink” apple under different temperature regimes. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Punia S, Sandhu KS, Dhull SB, Kaur M. Dynamic, shear and pasting behaviour of native and octenyl succinic anhydride (OSA) modified wheat starch and their utilization in preparation of edible films. Int J Biol Macromol 2019; 133:110-116. [DOI: 10.1016/j.ijbiomac.2019.04.089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
|
12
|
Pająk P, Socha R, Broniek J, Królikowska K, Fortuna T. Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chem 2018; 275:69-76. [PMID: 30724250 DOI: 10.1016/j.foodchem.2018.09.081] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/30/2022]
Abstract
Seeds and sprouts are of considerable interest due to their numerous pro-health benefits. The aim of this study was to investigate the effect of germination on the mineral composition (performed by flame absorption atomic spectroscopy), total phenolic content, antioxidant activity, as well as phenolic profiles (before and after alkaline hydrolysis by high-performance liquid chromatography) of chia, golden flax, evening primrose, phacelia and fenugreek seeds. Generally, significant (p < 0.05) changes in the individual minerals composition of the seeds, improvement of their antioxidant properties, as well as increase in levels of individual phenolic compounds was found after seeds germination. Alkaline hydrolysis allowed to release free forms of phenolics and to confirm (chromatographically) their significantly higher amounts when compared to the nonhydrolyzed fraction. Gallic, protocatechuic, caffeic, p-coumaric, ferulic and sinapic acids, as well as quercetin and kaempferol were identified in analyzed seeds and sprouts. Sprouts exhibited better nutritional values than their un-germinated forms.
Collapse
Affiliation(s)
- Paulina Pająk
- Department of Food Analysis and Evaluation of Food Quality, Faculty of Food Technology, University of Agriculture, Balicka Str. 122, 30-149 Kraków, Poland.
| | - Robert Socha
- Department of Food Analysis and Evaluation of Food Quality, Faculty of Food Technology, University of Agriculture, Balicka Str. 122, 30-149 Kraków, Poland.
| | - Joanna Broniek
- Department of Food Analysis and Evaluation of Food Quality, Faculty of Food Technology, University of Agriculture, Balicka Str. 122, 30-149 Kraków, Poland.
| | - Karolina Królikowska
- Department of Food Analysis and Evaluation of Food Quality, Faculty of Food Technology, University of Agriculture, Balicka Str. 122, 30-149 Kraków, Poland.
| | - Teresa Fortuna
- Department of Food Analysis and Evaluation of Food Quality, Faculty of Food Technology, University of Agriculture, Balicka Str. 122, 30-149 Kraków, Poland.
| |
Collapse
|