1
|
Dayakar B, Xavier M, Ngasotter S, Dhanabalan V, Porayil L, Balange AK, Nayak BB. Extraction, optimization, and functional quality evaluation of carotenoproteins from shrimp processing side streams through enzymatic process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-30232-1. [PMID: 37831258 DOI: 10.1007/s11356-023-30232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
The study aimed to develop an effective and eco-friendly enzymatic process to extract carotenoproteins from shrimp waste. The optimization of enzymatic hydrolysis conditions to maximize the degree of deproteinization (DDP) of carotenoprotein from shrimp head waste (SHW) and shrimp shell waste (SSW) was conducted separately using the Box-Behnken design of response surface methodology (RSM). To achieve a maximum DDP of 92.32% for SSW and 96.72% for SHW, the optimal hydrolysis conditions were determined as follows: temperature (SSW: 53.13 °C; SHW: 45.90 °C), pH (SSW: 7.13; SHW: 6.78), time (SSW: 90 min; SHW: 61.18 min), and enzyme/substrate ratio (SSW: 2 g/100 g; SHW: 1.18 g/100 g). The carotenoprotein effluent obtained was subjected to spray drying and subsequently assessed for color, nutritional, and functional characteristics. The carotenoprotein from shrimp shell (CpSS) contained a higher essential amino acid score than carotenoprotein from shrimp head (CpSH). CpSS had a higher whiteness index of 82.05, while CpSH had 64.04. Both CpSS and CpSH showed good functional properties viz solubility, emulsion, and foaming properties. The maximum solubility of CpSH and CpSS was determined to be 92.94% and 96.48% at pH 10.0, respectively. The highest emulsion capacity (CpSH: 81.33%, CpSS: 70.13%) and stability (CpSH: 57.06%, CpSS: 63.05%) were observed at 3% carotenoprotein concentration. Similarly, the highest values of foaming capacity (CpSH: 27.66%, CpSS: 105.5%) and stability (CpSH: 23.83%, CpSS: 105.33%) were also found at the same 3% carotenoprotein concentration. In conclusion, the carotenoproteins obtained from shrimp waste showed favorable attributes in terms of color, amino acid composition, and functional properties. These findings strongly suggest the potential applicability of CpSS and CpSH as valuable resources in various domains. CpSS, with its higher whiteness index, greater amino acid content, and superior functional characteristics, may find suitability as functional ingredients in human food products. Conversely, CpSH could be considered for incorporation into animal feed formulations.
Collapse
Affiliation(s)
- Bandela Dayakar
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
| | - Martin Xavier
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India.
| | - Soibam Ngasotter
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
| | - Vignaesh Dhanabalan
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
| | - Layana Porayil
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
| | | | - Binaya Bhusan Nayak
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
| |
Collapse
|
2
|
Dayakar B, Xavier KM, Ngasotter S, Layana P, Balange AK, Priyadarshini B, Nayak BB. Characterization of spray-dried carotenoprotein powder from Pacific white shrimp (Litopenaeus vannamei) shells and head waste extracted using papain: Antioxidant, spectroscopic, and microstructural properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Jamalluddin NA, Ismail N, Mutalib SRA, Sikin AM. Sc-CO 2 extraction of fish and fish by-products in the production of fish oil and enzyme. BIORESOUR BIOPROCESS 2022; 9:21. [PMID: 38647764 PMCID: PMC10992331 DOI: 10.1186/s40643-022-00509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
Supercritical carbon dioxide (Sc-CO2) is an alternative tool to extract lipid for the production of fish oil and enzyme from fish by-products (FBPs). In the application of Sc-CO2, this review covers sample preparation, lipid extraction operation, and characterization of fish oil and enzyme as final products. Generally, the fish samples with moisture content less than 20% and particle size less than 5 mm are considered before lipid extraction with Sc-CO2. Sc-CO2 parameters, such as pressure (P), temperature (T), extraction time (text), and flow rate (F), for simultaneous recovery of fish oil, protein, and enzyme were found to be less severe (P: 10.3-25 MPa; T: 25-45 °C, text: 20-150 min; F: 3-50 g/min) than the extraction of fish oil alone (P: 10-40 Mpa; T: 35-80 °C; text: 30-360 min; F: 1-3000 g/min). The enzyme from the Sc-CO2 defatted sample showed higher activity up to 45 U/mg due to lower denaturation of protein as compared to the organic solvent treated sample albeit both samples having similar pH (6-10) and temperature stability (20-60 °C). Overall, mild extraction of lipid from FBPs using Sc-CO2 is effective for the production of enzymes suitable in various industrial applications. Also, fish oil as a result of extraction can be produced as a health product with high polyunsaturated fatty acids (PUFAs) and low contamination of heavy metals.
Collapse
Affiliation(s)
- Nur Anati Jamalluddin
- Department of Food Science and Technology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor D.E, Malaysia
| | - Normah Ismail
- Department of Food Science and Technology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor D.E, Malaysia
| | - Siti Roha Ab Mutalib
- Department of Food Science and Technology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor D.E, Malaysia
| | - Adi Md Sikin
- Department of Food Science and Technology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor D.E, Malaysia.
| |
Collapse
|
4
|
de Silva MKS, Senaarachchi W. Efficiency of biotransformation of shellfish waste to carotenoprotein by autolysis and crab-shrimp endo-enzymes. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1900967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- M.P. Kumudu S.K. de Silva
- University of Ruhuna Ringgold Standard Institution - Department of Zoology, University of Ruhuna, Matara, Sri Lanka
| | - W.A.R.K. Senaarachchi
- University of Ruhuna Ringgold Standard Institution - Department of Zoology, University of Ruhuna, Matara, Sri Lanka
| |
Collapse
|
5
|
Ahmadi F, Pirdashti M, Arzideh SM, Khoiroh I. Phase behavior for 1-butyl-3-methylimidazolium tetrafluoroborate with sodium oxalate/succinate/formate aqueous two-phase systems at 298.15 and 308.15 K. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2019.1659147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Fatemeh Ahmadi
- Chemical Engineering Department, Faculty of Engineering, Shomal University , Amol , Mazandaran , Iran
| | - Mohsen Pirdashti
- Chemical Engineering Department, Faculty of Engineering, Shomal University , Amol , Mazandaran , Iran
| | | | - Ianatul Khoiroh
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus , Semenyih , Selangor Darul Ehsan , Malaysia
| |
Collapse
|
6
|
Saravana Pandian P, Sindhanai Selvan S, Subathira A, Saravanan S. Optimization of Aqueous Two Phase Extraction of Proteins from Litopenaeus Vannamei Waste by Response Surface Methodology Coupled Multi-Objective Genetic Algorithm. CHEMICAL PRODUCT AND PROCESS MODELING 2020. [DOI: 10.1515/cppm-2019-0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Waste generated from industrial processing of seafood is an enormous source of commercially valuable proteins. One among the underutilized seafood waste is shrimp waste, which primarily consists of head and carapace. Litopenaeus vannamei (L. vannamei) is the widely cultivated shrimp in Asia and contributes to 90 % of aggregate shrimp production in the world. This work was focused on extraction as well as purification of value-added proteins from L. vannamei waste in a single step aqueous two phase system (ATPS). Polyethylene glycol (PEG) and trisodium citrate system were chosen for the ATPS owing to their adequate partitioning and less toxic nature. Response surface methodology (RSM) was implemented for the optimization of independent process variables such as PEG molecular weight (2000 to 6000), pH (6 to 8) and temperature (25 to 45 °C). The results obtained from RSM were further validated using a Multi-objective genetic algorithm (MGA). At the optimized condition of PEG molecular weight 2000, pH 8 and temperature 35 °C, maximum partition coefficient and protein yield were found to be 2.79 and 92.37 %, respectively. Thus, L. vannamei waste was proved to be rich in proteins, which could be processed industrially through cost-effective non-polluting ATPS extraction, and RSM coupled MGA could be a potential tool for such process optimization.
Collapse
|
7
|
de Melo Oliveira V, Carneiro da Cunha MN, Dias de Assis CR, Matias da Silva Batista J, Nascimento TP, dos Santos JF, de Albuquerque Lima C, de Araújo Viana Marques D, de Souza Bezerra R, Figueiredo Porto AL. Separation and partial purification of collagenolytic protease from peacock bass (Cichla ocellaris) using different protocol: Precipitation and partitioning approaches. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Optimal immobilization of trypsin from the spleen of albacore tuna (Thunnus alalunga) and its characterization. Int J Biol Macromol 2020; 143:462-471. [DOI: 10.1016/j.ijbiomac.2019.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 11/20/2022]
|
9
|
Poonsin T, Simpson BK, Benjakul S, Visessanguan W, Yoshida A, Osatomi K, Klomklao S. Anionic trypsin from the spleen of albacore tuna (Thunnus alalunga): Purification, biochemical properties and its application for proteolytic degradation of fish muscle. Int J Biol Macromol 2019; 133:971-979. [DOI: 10.1016/j.ijbiomac.2019.04.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
|
10
|
Sales Oliveira B, Maria de Souza D'Anzicourt C, Mara Faria Soares C, Lucena de Souza R, Silva Lima Á. Liquid-liquid extraction of phenolic compounds in systems based on acetonitrile + water + polyvinylpyrrolidone at 298.15 K. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Poonsin T, Simpson BK, Benjakul S, Visessanguan W, Yoshida A, Klomklao S. Albacore tuna spleen trypsin: Potential application as laundry detergent additive and in carotenoprotein extraction from Pacific white shrimp shells. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Khan BM, Cheong KL, Liu Y. ATPS: “Aqueous two-phase system” as the “answer to protein separation” for protein-processing food industry. Crit Rev Food Sci Nutr 2018; 59:3165-3178. [PMID: 29883189 DOI: 10.1080/10408398.2018.1486283] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Bilal Muhammad Khan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, PR China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, PR China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou, Guangdong, PR China
| |
Collapse
|
13
|
Poonsin T, Simpson BK, Benjakul S, Visessanguan W, Yoshida A, Klomklao S. Carotenoprotein from Pacific white shrimp (Litopenaeus vannamei
) shells extracted using trypsin from albacore tuna (Thunnus alalunga
) spleen: Antioxidant activity and its potential in model systems. J Food Biochem 2017. [DOI: 10.1111/jfbc.12462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tanchanok Poonsin
- Biotechnology Program, Faculty of Technology and Community Development; Thaksin University, Phatthalung Campus; Phatthalung 93210 Thailand
| | - Benjamin K. Simpson
- Department of Food Science and Agricultural Chemistry; McGill University, Macdonald Campus, Ste. Anne de Bellevue; Quebec H9X 3V9 Canada
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry; Prince of Songkla University; Hat Yai, Songkhla 90112 Thailand
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Paholayothin Road, Klong 1, Klong Luang; Pathumthani 12120 Thailand
| | - Asami Yoshida
- Graduate School of Fisheries Science and Environmental Studies; Nagasaki University, 1-14 Bunkyo; Nagasaki 852-8521 Japan
| | - Sappasith Klomklao
- Department of Food Science and Technology, Faculty of Technology and Community Development; Thaksin University, Phatthalung Campus; Phatthalung 93210 Thailand
| |
Collapse
|